The chapter presents three new fractal indices (fractal fragmentation index, fractal tentacularity index, and fractal anisotropy index) and normalized Kolmogorov complexity with proven applicability in geographic research, developed by the authors, and the possibility of their future use in neuroscience. The research demonstrates the relevance of fractal analysis in different fields and the basic concepts and principles of fractal geometry being sufficient for the development of models relevant to the studied reality. Also, the research highlighted the need to continue interdisciplinary research based on known fractal indicators, as well as the development of new analysis methods with the translational potential between fields.
View Article and Find Full Text PDFComplex systems such as the global climate, biological organisms, civilisation, technical or social networks exhibit diverse behaviours at various temporal and spatial scales, often characterized by nonlinearity, feedback loops, and emergence. These systems can be characterized by physical quantities such as entropy, information, chaoticity or fractality rather than classical quantities such as time, velocity, energy or temperature. The drawback of these complexity quantities is that their definitions are not always mathematically exact and computational algorithms provide estimates rather than exact values.
View Article and Find Full Text PDFThe complexity in the styles of 1200 Byzantine icons painted between 13th and 16th from Greece, Russia and Romania was investigated through the Kolmogorov algorithmic information theory. The aim was to identify specific quantitative patterns which define the key characteristics of the three different painting schools. Our novel approach using the artificial surface images generated with Inverse FFT and the Midpoint Displacement (MD) algorithms, was validated by comparison of results with eight fractal and non-fractal indices.
View Article and Find Full Text PDFBackground: Computational analysis of routinely acquired MRI has potential to improve the tumor chemoresistance prediction and to provide decision support in precision medicine, which may extend patient survival. Most radiomic analytical methods are compatible only with rectangular regions of interest (ROIs) and irregular tumor shape is therefore an important limitation. Furthermore, the currently used analytical methods are not directionally sensitive.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Home-based self-training can be beneficial to neurocardiogenic patients, particularly for those who experience a decreased heart rate during the clinical head up tilt test (HUT). Many patients, however, may not be able to attend a clinic and/or attend clinics which lack HUT devices. Individualized heart rate prediction based on a simulated HUT (sHUT) model may address this gap in clinical practice.
View Article and Find Full Text PDFExcessive expression of subunit 1 of GIRK1 in ER breast tumors is associated with reduced survival times and increased lymph node metastasis in patients. To investigate possible tumor-initiating properties, benign MCF10A and malign MCF7 mammary epithelial cells were engineered to overexpress GIRK1 neoplasia associated vital parameters and resting potentials were measured and compared to controls. The presence of GIRK1 resulted in resting potentials negative to the controls.
View Article and Find Full Text PDFIntroduction: Fat is a metabolic fuel, but excess body fat is ballast mass, and therefore, many elite athletes reduce body fat to dangerously low levels. Uncompressed subcutaneous adipose tissue (SAT) thickness measured by brightness-mode ultrasound (US) provides an estimate of body fat content.
Methods: The accuracy for determining tissue borders is about 0.
The ever decreasing area of forests has lead to environmental and economical challenges and has brought with it a renewed interest in developing methodologies that quantify the extent of deforestation and reforestation. In this study we analyzed the deforested areas of the Apuseni Mountains, which has been under economic pressure in recent years and resulted in widespread deforestation as a means of income. Deforested surface dynamics modeling was based on images contained in the Global Forest Database, provided by the Department of Geographical Sciences at Maryland University between 2000 and 2014.
View Article and Find Full Text PDFBeat to beat variability of cardiac tissue or isolated cells is frequently investigated by determining time intervals from electrode measurements in order to compute scale dependent or scale independent parameters. In this study, we utilize high-speed video camera recordings to investigate the variability of intervals as well as mechanical contraction strengths and relative contraction strengths with nonlinear analyses. Additionally, the video setup allowed us simultaneous electrode registrations of extracellular potentials.
View Article and Find Full Text PDFFractal analysis is a widely used tool to analyze the geometrical complexity of biological structures. The geometry of natural objects such as plants, clouds, cellular structures, blood vessel, and many others cannot be described sufficiently with Euclidian geometric properties, but can be represented by a parameter called the fractal dimension. Here we show that a specific estimate of fractal dimension, the correlation dimension, is able to describe changes in the structural complexity of the human brain, based on data from magnetic resonance diffusion imaging.
View Article and Find Full Text PDFNeural Comput Appl
September 2016
The main principle of diagnostic pathology is the reliable interpretation of individual cells in context of the tissue architecture. Especially a confident examination of bone marrow specimen is dependent on a valid classification of myeloid cells. In this work, we propose a novel rotation-invariant learning scheme for multi-class echo state networks (ESNs), which achieves very high performance in automated bone marrow cell classification.
View Article and Find Full Text PDFPhysiological processes are regulated by nonlinear dynamical systems. Various nonlinear measures have frequently been used for characterizing the complexity of fractal time signals to detect system features that cannot be derived from linear analyses. We analysed human balance dynamics ranging from simple standing to balancing on one foot with closed eyes to study the inherent methodological problems when applying fractal dimension analysis to real-world signals.
View Article and Find Full Text PDFModern instrumentation provides us with massive repositories of digital images that will likely only increase in the future. Therefore, it has become increasingly important to automatize the analysis of digital images, e.g.
View Article and Find Full Text PDFA recently standardized ultrasound technique for measuring subcutaneous adipose tissue (SAT) was applied to normal-weight, overweight and obese persons. Eight measurement sites were used: upper abdomen, lower abdomen, erector spinae, distal triceps, brachioradialis, lateral thigh, front thigh and medial calf. Fat compression was avoided.
View Article and Find Full Text PDFThe human heart has a heterogeneous structure, which is characterized by different cell types and their spatial configurations. The physical structure, especially the fibre orientation and the interstitial fibrosis, determines the electrical excitation and in further consequence the contractility in macroscopic as well as in microscopic areas. Modern image processing methods and parameters could be used to describe the image content and image texture.
View Article and Find Full Text PDFFractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels.
View Article and Find Full Text PDFBackground: Precise and accurate field methods for body composition analyses in athletes are needed urgently.
Aim: Standardisation of a novel ultrasound (US) technique for accurate and reliable measurement of subcutaneous adipose tissue (SAT).
Methods: Three observers captured US images of uncompressed SAT in 12 athletes and applied a semiautomatic evaluation algorithm for multiple SAT measurements.
Fractal dimensions of data series, particularly time series can be estimated very well by using Higuchi's algorithm. Without phase space constructions, the fractal dimension of a one-dimensional data stream is calculated. Higuchi's method is well accepted and widely applied, because it is very reliable and easy to implement.
View Article and Find Full Text PDFImage and signal analysis applications are substantial in scientific research. Both open source and commercial packages provide a wide range of functions for image and signal analysis, which are sometimes supported very well by the communities in the corresponding fields. Commercial software packages have the major drawback of being expensive and having undisclosed source code, which hampers extending the functionality if there is no plugin interface or similar option available.
View Article and Find Full Text PDFIntroduction: Cervical intraepithelial neoplasias (CIN) represent precursor lesions of cervical cancer. These neoplastic lesions are traditionally subdivided into three categories CIN 1, CIN 2, and CIN 3, using microscopical criteria. The relation between grades of cervical intraepithelial neoplasia (CIN) and its fractal dimension was investigated to establish a basis for an objective diagnosis using the method proposed.
View Article and Find Full Text PDFAdvanced medical imaging technologies provide a wealth of information on cardiac anatomy and structure at a paracellular resolution, allowing to identify microstructural discontinuities which disrupt the intracellular matrix. Current state-of-the-art computer models built upon such datasets account for increasingly finer anatomical details, however, structural discontinuities at the paracellular level are typically discarded in the model generation process, owing to the significant costs which incur when using high resolutions for explicit representation. In this study, a novel discontinuous finite element (dFE) approach for discretizing the bidomain equations is presented, which accounts for fine-scale structures in a computer model without the need to increase spatial resolution.
View Article and Find Full Text PDFExtracardiac factors of heart rate variability have commonly been investigated using linear and nonlinear methods for a long time. Recently, intracardiac mechanisms on an electrophysiological basis have been found to be also important. This work is focused on the evaluation of complex measures of temporal signals gained with microelectrode measurements of embryonic chick heart aggregates.
View Article and Find Full Text PDFBackground: Extremely low weight and rapid changes in weight and body composition have become major concerns in many sports, but sufficiently accurate field methods for body composition assessment in athletes are missing. This study aimed to explore the use of ultrasound methods for assessment of body fat content in athletes.
Methods: 19 female athletes (stature: 1.
Background: Very low body mass, extreme mass changes, and extremely low per cent body fat are becoming increasingly common in many sports, but sufficiently reliable and accurate field methods for body composition assessment in athletes are missing.
Methods: Nineteen female athletes were investigated (mean (SD) age: 19.5 (± 3.