Publications by authors named "Helmi Wasoh"

Functional yogurt, renowned for its enhanced nutritional profile and potential health benefits, has emerged as a promising functional food. This review meticulously examines the nutritional composition of functional yogurt, highlighting its enriched content of probiotics, prebiotics, synbiotics, antioxidants, vitamins, minerals, proteins, and other bioactive compounds, which contribute to its health-promoting properties. Functional yogurt has positively affected digestive health, immune function, metabolic health, and mental well-being.

View Article and Find Full Text PDF

The globally vital oil palm, a major oil producer, confronts productivity challenges due to Ganoderma boninense (Gb), causing output decline. Chemical control efforts have proven ineffective, prompting exploration of microbial-based biocontrol. While single fungal biocontrol research exists, the impact of employing multiple biocontrols concurrently to combat Ganoderma and enhance oil palm growth remains uncharted.

View Article and Find Full Text PDF

Whole-cell immobilisation technology involving ℽ-aminobutyric acid GABA biosynthesis using lactic acid bacteria (LAB) has been extensively studied owing to its numerous benefits over free-living bacteria, including enhanced productivity, improved cell viability, ability to prevent cell lysis and protect cells against bacteriophages and other stressful conditions. Therefore, a novel LAB biocatalyst was developed using various fruit and fruit waste, immobilising a potential probiotic strain, Lactiplantibacillus plantarum B7, via an adsorption method to improve GABA and cell viability. Apple and watermelon rind have been known to be the ideal natural supports for L.

View Article and Find Full Text PDF

Gamma-aminobutyric acid (GABA) is a non-protein amino acid widely distributed in nature and extensively explored for its numerous physiological functions and effects on metabolic disorders. Lactic acid bacteria (LAB) are one of the most important GABA producers, vigorously pursued due to their high GABA content and generally regarded as safe (GRAS) status that allows for direct formulation in various GABA-enriched food products. To meet the strict requirements of the food and nutraceutical industries, the biosynthesis of GABA is typically preferred over the chemical synthesis route.

View Article and Find Full Text PDF
Article Synopsis
  • High broth viscosity caused by hyaluronic acid (HA) accumulation restricts HA yield during production.
  • Extractive fermentation with in situ product recovery (ISPR) was tested using various Amberlite resins, with IRA67 showing the best HA adsorption capacity.
  • Using IRA67 in dispersed and integrated systems significantly increased HA production by 1.37-fold, and an internal column system improved yield further, while also reducing viscosity from 58.8 to 23.7 mPa·s, indicating effective purification potential.
View Article and Find Full Text PDF

Adulteration of lard with other fats and oils in food production affects many areas including economics, religion, and health. Previous studies discriminated lard based on major components of fats, i.e.

View Article and Find Full Text PDF

Aptamers are a group of synthetic single-stranded nucleic acids. They are generated from a random library of single-stranded DNA or RNA by a technology named systematic evolution of ligands by exponential enrichment (SELEX). SELEX is a repetitive process to select and identify suitable aptamers that show high affinity and specificity towards target cells.

View Article and Find Full Text PDF

Paddy is an important crop in Malaysia. There are various pathogens able to infect paddy causing a loss in yield's production. In this study, dual culture method, volatile organic compound (VOC) analysis, and non-volatile compound analysis were used to assess the ability of mushroom to control fungal rice pathogens including Curvularia lunata, Bipolaris panici-miliacei, and Nigrospora sp.

View Article and Find Full Text PDF

Biodiesel side stream waste glycerol was identified as a cheap carbon source for rhamnolipids (RLs) production which at the same time could improve the management of waste. The present study aimed to produce RLs by using Pseudomonas aeruginosa RS6 utilizing waste glycerol as a substrate and to evaluate their physico-chemicals properties. Fermentation conditions such as temperature, initial medium pH, waste glycerol concentration, nitrogen sources and concentrations resulted in different compositions of the mono- and di-RLs produced.

View Article and Find Full Text PDF

Identification of honey origin based on specific chemical markers is important for honey authentication. This study is aimed to differentiate Malaysian stingless bee honey from different entomological origins (Heterotrigona bakeri, Geniotrigona thoracica and Tetrigona binghami) based on physicochemical properties (pH, moisture content, ash, total soluble solid and electrical conductivity) and volatile compound profiles. The discrimination pattern of 75 honey samples was observed using Principal Component Analysis (PCA), Hierarchical Clustering Analysis (HCA), Partial Least Square-Discriminant Analysis (PLS-DA), and Support Vector Machine (SVM).

View Article and Find Full Text PDF

The identification of rice bacterial leaf blight disease requires a simple, rapid, highly sensitive, and quantitative approach that can be applied as an early detection monitoring tool in rice health. This paper highlights the development of a turn-off fluorescence-based immunoassay for the early detection of Xanthomonas oryzae pv. oryzae (Xoo), a gram-negative bacterium that causes rice bacterial leaf blight disease.

View Article and Find Full Text PDF

Death from tuberculosis has resulted in an increased need for early detection to prevent a tuberculosis (TB) epidemic, especially in closed and crowded populations. Herein, a sensitive electrochemical DNA biosensor based on functionalized iron oxide with mercaptopropionic acid (MPA-FeO) nanoparticle and nanocellulose crystalline functionalized cetyl trimethyl ammonium bromide (NCC/CTAB) has been fabricated for the detection of (MTB). In this study, a simple drop cast method was applied to deposit solution of MPA-FeO/NCC/CTAB onto the surface of the screen-printed carbon electrode (SPCE).

View Article and Find Full Text PDF

In this study, an electrochemical immunosensor was introduced for the detection of tuberculosis (TB) via utilization of a modified electrode containing a quantum dot (CdSe/ZnS QD) and functionalized silica nanoparticles (SiNPs) on screen-printed carbon electrode (SPCE) CdSe/ZnS QD/SiNPs/SPCE, by employing indirect enzyme-linked immunosorbent assay (ELISA). Here, the fabricated electrode was linked to the biocatalytic action of enzyme catalase through antigen-antibody binding for the detection of the antigen (CFP10-ESAT6) by means of producing a differential pulse voltammetry (DPV) current. The characterization and cyclic voltammetry (CV) of the modified electrode showed good electrochemical behavior and enhanced high electron transfer between the electrode and analyte.

View Article and Find Full Text PDF

There has been an explosion of probiotic incorporated based product. However, many reports indicated that most of the probiotics have failed to survive in high quantity, which has limited their effectiveness in most functional foods. Thus, to overcome this problem, microencapsulation is considered to be a promising process.

View Article and Find Full Text PDF

The present study deals with the synthesis, characterization, and DNA extraction of poly(4,4'-cyclohexylidene bisphenol oxalate)/silica (Si) nanocomposites (NCs). The effects of varying the monomer/Si (3.7%, 7%, and 13%) ratio towards the size and morphology of the resulting NC and its DNA extraction capabilities have also been studied.

View Article and Find Full Text PDF

The present study has synthesized poly(4,4'-cyclohexylidene bisphenol oxalate) by the condensation of oxalyl chloride with 4,4'-cyclohexylidene bisphenol, where its efficacy was tested for the solid-phase extraction of DNA. The synthesized polymer in the form of a white powder was characterized by FTIR, TGA-DTG, SEM, and BET analysis. The study utilized solid-phase application of the resulting polymer to extract DNA.

View Article and Find Full Text PDF

In the present study, a beneficial approach for the ultrasensitive and affordable naked eye detection and diagnosis of tuberculosis (TB) by utilizing plasmonic enzyme-linked immunosorbent assay (ELISA) via antibody-antigen interaction was studied. Here, the biocatalytic cycle of the intracellular enzymes links to the formation and successive growth of the gold nanoparticles (GNPs) for ultrasensitive detection. The formation of different colored solutions by the plasmonic nanoparticles in the presence of enzyme labels links directly to the existence or non-existence of the TB analytes in the sample solutions.

View Article and Find Full Text PDF

The synthesis of kojic acid derivative (KAD) from kojic and palmitic acid (C16:0) in the presence of immobilized lipase from (commercially known as Lipozyme RMIM), was studied using a shake flask system. Kojic acid is a polyfunctional heterocycles that acts as a source of nucleophile in this reaction allowing the formation of a lipophilic KAD. In this study, the source of biocatalyst, Lipozyme RMIM, was derived from the lipase of immobilized on weak anion exchange macro-porous Duolite ES 562 by the adsorption technique.

View Article and Find Full Text PDF

Lactic acid bacteria are industrially important microorganisms recognized for fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Fermentation conditions such as concentration of initial glucose in the culture, concentration of lactic acid accumulated in the culture, types of pH control strategy, types of aeration mode and different agitation speed had influenced the cultivation performance of batch fermentation of Pediococcus acidilactici. The maximum viable cell concentration obtained in constant fed-batch fermentation at a feeding rate of 0.

View Article and Find Full Text PDF

In recent years, many efforts have been directed to explore the methods to reduce the production costs of industrial lipase by improving the yield and the use of low-cost agricultural wastes. Coconut dregs, which is a lignocellulosic by-product from coconut oil and milk processing plants, is rich in cellulose (36%) and crude fat (9%). A newly isolated Bacillus stratosphericus has been demonstrated to perform cellulose hydrolysis on coconut dregs producing fermentable sugars.

View Article and Find Full Text PDF