Understanding what factors influence plastic and genetic variation is valuable for predicting how organisms respond to changes in the selective environment. Here, using gene expression and DNA methylation as molecular phenotypes, we study environmentally induced variation among plants grown at lowland and alpine field sites. Our results show that gene expression is highly plastic, as many more genes are differentially expressed between the field sites than between populations.
View Article and Find Full Text PDFBackground And Aims: Photoperiod contains information about the progress of seasons. Plants use the changing photoperiod as a cue for the correct timing of important life history events, including flowering. Here the effect of photoperiod on flowering in four Arabidopsis lyrata populations originating from different latitudes was studied, as well as expression levels of candidate genes for governing the between-population differences.
View Article and Find Full Text PDFSeed germination is an important developmental and life history stage. Yet, the evolutionary impact of germination has mainly been studied in the context of dormancy, or for its role in reproductive isolation between species. Here, we aim to examine multiple consequences of genetic divergence on germination traits between two Arabidopsis lyrata subspecies: ssp.
View Article and Find Full Text PDFSpatially varying selection can lead to population-specific adaptation, which is often recognized at the phenotypic level; however, the genetic evidence is weaker in many groups of organisms. In plants, environmental shifts that occur due to colonization of a novel environment may require adaptive changes in the timing of growth and flowering, which are often governed by location-specific environmental cues such as day length. We studied locally varying selection in 19 flowering time loci in nine populations of the perennial herb Arabidopsis lyrata, which has a wide but patchy distribution in temperate and boreal regions of the northern hemisphere.
View Article and Find Full Text PDFBackground And Aims: The adaptive plastic reactions of plant populations to changing climatic factors, such as winter temperatures and photoperiod, have changed during range shifts after the last glaciation. Timing of flowering is an adaptive trait regulated by environmental cues. Its genetics has been intensively studied in annual plants, but in perennials it is currently not well characterized.
View Article and Find Full Text PDFFLOWERING LOCUS C (FLC) is one of the main genes influencing the vernalization requirement and natural flowering time variation in the annual Arabidopsis thaliana. Here we studied the effects of vernalization on flowering and its genetic basis in the perennial Arabidopsis lyrata. Two tandemly duplicated FLC genes (FLC1 and FLC2) were compared with respect to expression and DNA sequence.
View Article and Find Full Text PDFSpecies share homologous genes to a large extent, but it is not yet known to what degree the same loci have been targets for natural selection in different species. Natural variation in flowering time is determined to a large degree by 2 genes, FLOWERING LOCUS C and FRIGIDA, in Arabidopsis thaliana. Here, we examine whether FRIGIDA has a role in differences in flowering time between and within natural populations of Arabidopsis lyrata, a close outcrossing perennial relative of A.
View Article and Find Full Text PDFTo add detail to the genetic map of Arabidopsis lyrata, and compare it with that of A. thaliana, we have developed many additional markers in the A. lyrata linkage groups, LG1 and LG2, corresponding to A.
View Article and Find Full Text PDFArabidopsis thaliana has emerged as a model organism for plant developmental genetics, but it is also now being widely used for population genetic studies. Outcrossing relatives of A. thaliana are likely to provide suitable additional or alternative species for studies of evolutionary and population genetics.
View Article and Find Full Text PDFWe have constructed a genetic map of Arabidopsis lyrata, a self-incompatible relative of the plant model species A. thaliana. A.
View Article and Find Full Text PDFEvidence of adaptation in Arabidopsis thaliana (Brassicaceae) phenotypic traits has rarely been shown. We demonstrate latitudinal clines in two A. thaliana traits: hypocotyl responses to red and far-red light.
View Article and Find Full Text PDFInbreeding depression may be caused by (partially) recessive or overdominant gene action. The relative evolutionary importance of these two modes has been debated; the former mode is emphasized in the "dominance hypothesis," the latter in the "overdominance hypothesis." We analyzed the genetic basis of inbreeding depression in the self-incompatible herb Arabis petraea (L.
View Article and Find Full Text PDFOutcrossing rates were estimated in a natural Yugoslavian and in a cultivated Finnish population of Serbian spruce [Picea omorika (Pančić) Purk.]. The outcrossing rates in the cultivated stand in two years were 0.
View Article and Find Full Text PDF