Despite the many potential applications of an accurate indoor positioning system (IPS), no universal, readily available system exists. Much of the IPS research to date has been based on the use of radio transmitters as positioning beacons. Visible light positioning (VLP) instead uses LED lights as beacons.
View Article and Find Full Text PDFHighly infectious viral diseases are a serious threat to mankind as they can spread rapidly among the community, possibly even leading to the loss of many lives. Early diagnosis of a viral disease not only increases the chance of quick recovery, but also helps prevent the spread of infections. There is thus an urgent need for accurate, ultrasensitive, rapid, and affordable diagnostic techniques to test large volumes of the population to track and thereby control the spread of viral diseases, as evidenced during the COVID-19 and other viral pandemics.
View Article and Find Full Text PDFBulk germanium as a group-IV photonic material has been widely studied due to its relatively large refractive index and broadband and low propagation loss from near-infrared to mid-infrared. Inspired by the research of graphene, the 2D counterpart of bulk germanium, germanene, has been discovered and the characteristics of Dirac electrons have been observed. However, the optical properties of germanene still remain elusive.
View Article and Find Full Text PDFWe have studied the ambient air oxidation of chemical vapor deposition (CVD) grown monolayers of the semiconducting transition metal dichalcogenide (S-TMD) WS using optical microscopy, laser scanning confocal microscopy (LSCM), photoluminescence (PL) spectroscopy, and atomic force microscopy (AFM). Monolayer WS exposed to ambient conditions in the presence of light (typical laboratory ambient light for weeks or typical PL spectroscopy map) exhibits damage due to oxidation which can be detected with the LSCM and AFM, though may not be evident in conventional optical microscopy due to poorer contrast and resolution. Additionally, this oxidation was not random and was correlated with "high-symmetry" high intensity edges and red-shifted areas in the PL spectroscopy map, areas thought to contain a higher concentration of sulfur vacancies.
View Article and Find Full Text PDFNonequilibrium interacting systems can evolve to exhibit large-scale structure and order. In two-dimensional turbulent flow, the seemingly random swirling motion of a fluid can evolve toward persistent large-scale vortices. To explain such behavior, Lars Onsager proposed a statistical hydrodynamic model based on quantized vortices.
View Article and Find Full Text PDFWe introduce a new method of statistical analysis to characterize the dynamics of turbulent fluids in two dimensions. We establish that, in equilibrium, the vortex distributions can be uniquely connected to the temperature of the vortex gas, and we apply this vortex thermometry to characterize simulations of decaying superfluid turbulence. We confirm the hypothesis of vortex evaporative heating leading to Onsager vortices proposed in Phys.
View Article and Find Full Text PDFWe demonstrate a method of creating high efficiency, high fidelity, holographic optical elements for the generation of complex optical fields, in a low cost photopolymer, Bayfol HX. The desired optical field profile is generated by a spatial light modulator and written into an optically addressable photopolymer as a volume hologram. We demonstrate the utility of this approach by trapping a Bose-Einstein condensate of rubidium-87 atoms in the nodal plane of an HG mode generated by one of these holographic optical elements.
View Article and Find Full Text PDFFeynman described the double slit experiment as "a phenomenon which is impossible, absolutely impossible, to explain in any classical way and which has in it the heart of quantum mechanics". The double-slit experiment, performed one photon at a time, dramatically demonstrates the particle-wave duality of quantum objects by generating a fringe pattern corresponding to the interference of light (a wave phenomenon) from two slits, even when there is only one photon (a particle) at a time passing through the apparatus. The particle-wave duality of light should also apply to complex three dimensional optical fields formed by multi-path interference, however, this has not been demonstrated.
View Article and Find Full Text PDFWe study the relaxation dynamics of an isolated zero temperature quasi-two-dimensional superfluid Bose-Einstein condensate that is imprinted with a spatially random distribution of quantum vortices. Following a period of vortex annihilation the remaining vortices self-organize into two macroscopic coherent "Onsager vortex" clusters that are stable indefinitely--despite the absence of driving or external dissipation in the dynamics. We demonstrate that this occurs due to a novel physical mechanism--the evaporative heating of the vortices--that results in a negative-temperature phase transition in the vortex degrees of freedom.
View Article and Find Full Text PDFWe present the labscript suite, an open-source experiment control system for automating shot-based experiments and their analysis. Experiments are composed as Python code, which is used to produce low-level hardware instructions. They are queued up and executed on the hardware in real time, synchronized by a pseudoclock.
View Article and Find Full Text PDFMicroscopic water-in-oil droplets are a versatile chemical and biological platform whose dimensions result in short reaction times and require minuscule amounts of reagent. Methods exist for the production of droplets, though the vast majority are only able to do so in continuous flows, restricting the ability to independently control reactions of individual droplets, a prerequisite for programmable digital microfluidics. Here we present a novel method to produce individual picoliter-scale droplets on-demand using surface acoustic waves (SAW).
View Article and Find Full Text PDFPartial-transfer absorption imaging is a tool that enables optimal imaging of atomic clouds for a wide range of optical depths. In contrast to standard absorption imaging, the technique can be minimally destructive and can be used to obtain multiple successive images of the same sample. The technique involves transferring a small fraction of the sample from an initial internal atomic state to an auxiliary state and subsequently imaging that fraction absorptively on a cycling transition.
View Article and Find Full Text PDFOptical trapping forces depend on the difference between the trap wavelength and the extinction resonances of trapped particles. This leads to a wavelength-dependent trapping force, which should allow for the optimization of optical tweezers systems, simply by choosing the best trapping wavelength for a given application. Here we present an optical tweezer system with wavelength tunability, for the study of resonance effects.
View Article and Find Full Text PDFWe have created a long-lived (≈40 s) persistent current in a toroidal Bose-Einstein condensate held in an all-optical trap. A repulsive optical barrier across one side of the torus creates a tunable weak link in the condensate circuit, which can affect the current around the loop. Superflow stops abruptly at a barrier strength such that the local flow velocity at the barrier exceeds a critical velocity.
View Article and Find Full Text PDFBackground: Mitochondrial DNA (mtDNA) genome mutations can lead to energy and respiratory-related disorders like myoclonic epilepsy with ragged red fiber disease (MERRF), mitochondrial myopathy, encephalopathy, lactic acidosis and stroke (MELAS) syndrome, and Leber's hereditary optic neuropathy (LHON). It is not well understood what effect the distribution of mutated mtDNA throughout the mitochondrial matrix has on the development of mitochondrial-based disorders. Insight into this complex sub-cellular heterogeneity may further our understanding of the development of mitochondria-related diseases.
View Article and Find Full Text PDFWe demonstrate that nondiffracting beams can be generated with an arbitrary transverse shape. In particular, we show that the azimuthal complex modulation of the angular spectra of Helmholtz-Gauss wave fields constitutes a degree of freedom sufficient to tailor nondiffracting beams with an intensity pattern of choice.
View Article and Find Full Text PDFWe describe a novel method of generating monodisperse subfemtoliter aqueous droplets on demand by means of piezoelectric injection. Droplets with volumes down to 200 aL are generated by this technique. The droplets are injected into a low refractive index perfluorocarbon so that they can be optically trapped.
View Article and Find Full Text PDFWe present experimental results on a Bose gas in a quasi-2D geometry near the Berezinskii, Kosterlitz, and Thouless (BKT) transition temperature. By measuring the density profile after time of flight and the coherence length, we identify different states of the gas. We observe that the gas develops a bimodal distribution without long range order.
View Article and Find Full Text PDFObjective: The aim of this study was the evaluation of two different photosensitizers activated by red light emitted by light-emitting diodes (LEDs) in the decontamination of carious bovine dentin.
Materials And Methods: Fifteen bovine incisors were used to obtain dentin samples which were immersed in brain-heart infusion culture medium supplemented with 1% glucose, 2% sucrose, and 1% young primary culture of Lactobacillus acidophilus 10(8) CFU/mL and Streptococcus mutans 10(8) CFU/mL for caries induction. Three different concentrations of the Photogem solution, a hematoporphyrin derivative (1, 2, and 3 mg/mL) and two different concentrations of toluidine blue O (TBO), a basic dye (0.
We inertially inject and study the contents of optically trappable aqueous nanodroplets (hydrosomes) emulsified in a perfluorinated matrix. A new piezoelectric actuated device for production of single hydrosomes on demand is introduced. Hydrosomes containing enhanced green fluorescent protein (EGFP) were injected, optically trapped, and held at the focus of an excitation laser in a confocal microscope, and single-molecule photobleaching events were observed.
View Article and Find Full Text PDFWe have observed the persistent flow of Bose-condensed atoms in a toroidal trap. The flow persists without decay for up to 10 s, limited only by experimental factors such as drift and trap lifetime. The quantized rotation was initiated by transferring one unit variant Planck's over 2pi of the orbital angular momentum from Laguerre-Gaussian photons to each atom.
View Article and Find Full Text PDFWe report on a new method to stabilize nanotube and vesicle structures created from amphiphilic diblock copolymers by means of photopolymerization. Cross-linking with UV light exposure minimizes fluid disruption during stabilization. Additionally, the spatial control afforded by focusing or masking the initiating light source enables stabilization of distinct segments of individual nanostructures.
View Article and Find Full Text PDFWe demonstrate the coherent transfer of the orbital angular momentum of a photon to an atom in quantized units of variant Planck's over 2pi, using a 2-photon stimulated Raman process with Laguerre-Gaussian beams to generate an atomic vortex state in a Bose-Einstein condensate of sodium atoms. We show that the process is coherent by creating superpositions of different vortex states, where the relative phase between the states is determined by the relative phases of the optical fields. Furthermore, we create vortices of charge 2 by transferring to each atom the orbital angular momentum of two photons.
View Article and Find Full Text PDFWe have observed high-order quantum resonances in a realization of the quantum delta-kicked rotor, using Bose-condensed Na atoms subjected to a pulsed standing wave of laser light. These resonances occur for pulse intervals that are rational fractions of the Talbot time, and are characterized by ballistic momentum transfer to the atoms. The condensate's narrow momentum distribution not only permits the observation of the quantum resonances at 3/4 and 1/3 of the Talbot time, but also allows us to study scaling laws for the resonance width in quasimomentum and pulse interval.
View Article and Find Full Text PDF