Stress can promote palatable food intake, and consumption of palatable foods may dampen psychological and physiological responses to stress. Here we develop a rat model of daily limited sweetened drink intake to further examine the linkage between consumption of preferred foods and hypothalamic-pituitary-adrenocortical axis responses to acute and chronic stress. Adult male rats with free access to water were given additional twice-daily access to 4 ml sucrose (30%), saccharin (0.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
April 2007
It is well established that estrogens markedly enhance the glucocorticoid response to acute stress in females. However, the precise mechanism responsible for this regulation is poorly understood. Here, we tested whether estrogens enhance the activation of the paraventricular nucleus (PVN) of the hypothalamus by measuring stress-induced c-fos mRNA expression in the PVN of restraint-stressed ovariectomized (OVX) rats treated with physiologically relevant doses of estradiol (E(2)), the major female estrogen.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
November 2006
The adrenal gland is an essential stress-responsive organ that is part of both the hypothalamic-pituitary-adrenal axis and the sympatho-adrenomedullary system. Chronic stress exposure commonly increases adrenal weight, but it is not known to what extent this growth is due to cellular hyperplasia or hypertrophy and whether it is subregion specific. Moreover, it is not clear whether increased production of adrenal glucocorticoid after chronic stress is due to increased sensitivity to adrenocorticotropic hormone (ACTH) vs.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
December 2005
Limbic dysfunction and hypothalamo-pituitary-adrenocortical (HPA) axis dysregulation are key features of affective disorders. The following review summarizes our current understanding of the relationship between limbic structures and control of ACTH and glucocorticoid release, focusing on the hippocampus, medial prefrontal cortex and amygdala. In general, the hippocampus and anterior cingulate/prelimbic cortex inhibit stress-induced HPA activation, whereas the amygdala and perhaps the infralimbic cortex may enhance glucocorticoid secretion.
View Article and Find Full Text PDFGABA and glutamate play a major role in central integration of hypothalamo-pituitary-adrenocortical (HPA) stress responses. Recent work in our group has focused on mechanisms whereby GABAergic and glutamatergic circuits interact with parvocellular paraventricular nucleus (PVN) neurons controlling the HPA axis. GABAergic neurons in the bed nucleus of the stria terminalis, preoptic area, and hypothalamus can directly inhibit PVN outflow and thereby reduce ACTH secretion.
View Article and Find Full Text PDFThe medial prefrontal cortex (mPFC) plays an important inhibitory role in the hypothalamic-pituitary-adrenal (HPA) axis response. The involvement of the mPFC appears to depend on the type of stressor, preferentially affecting 'psychogenic' stimuli. In this study, we mapped expression of c-fos mRNA to assess the neural circuitry underlying stressor-specific actions of the mPFC on HPA reactivity.
View Article and Find Full Text PDFAppropriate regulatory control of the hypothalamo-pituitary-adrenocortical stress axis is essential to health and survival. The following review documents the principle extrinsic and intrinsic mechanisms responsible for regulating stress-responsive CRH neurons of the hypothalamic paraventricular nucleus, which summate excitatory and inhibitory inputs into a net secretory signal at the pituitary gland. Regions that directly innervate these neurons are primed to relay sensory information, including visceral afferents, nociceptors and circumventricular organs, thereby promoting 'reactive' corticosteroid responses to emergent homeostatic challenges.
View Article and Find Full Text PDFPredator exposure is a naturalistic stressor of high ethological relevance. In the current study, our group examined central and peripheral integration of stress responses in rats after acute or repeated exposure to a natural predator (cat). Acute cat exposure rapidly induced hypothalamo-pituitary-adrenocortical (HPA) axis activation and paraventricular nucleus (PVN) CRH mRNA production.
View Article and Find Full Text PDFResponses to stressors serve to adjust physiology and behavior to increase short-term survival at the potential expense of increasing susceptibility to disease over the long term. We show that glucagon-like peptide-1 (7-36) amide (GLP-1) increases levels of the stress-activated hormones ACTH and corticosterone when administered directly into the rat brain and increases levels of anxiety as measured by the elevated plus maze. The endocrine response is preferentially activated by GLP-1 administration in the paraventricular nucleus of the hypothalamus, whereas the anxiety response is preferentially activated by administration in the central nucleus of the amygdala.
View Article and Find Full Text PDFSex plays a major role in stress integration and stress-related affective disease states. Notably, neurocircuits regulating organismic responses to stress are prime targets for central gonadal steroid action. To assess the roles of sex and estrous cycle in central stress integration, we analyzed c-fos mRNA expression in hypothalamic-pituitary-adrenocortical-related regions of stressed male and cycling female (proestrous, estrous, and diestrous) rats.
View Article and Find Full Text PDF