Publications by authors named "Helmeke C"

Lyme borreliosis (LB) is the most commonly reported tick-borne disease in Germany. In 9/16 states, notification of erythema migrans (EM), acute neuroborreliosis (NB) and Lyme arthritis (LA) is mandatory. We describe incidence measures, time trends, geographical distribution and frequencies of manifestations to better understand LB epidemiology and target prevention measures.

View Article and Find Full Text PDF

Influenza vaccine effectiveness (VE) has to be estimated anew for every season to explore vaccines' protective effect in the population. We report VE estimates against laboratory-confirmed influenza A(H1N1)pdm09, A(H3N2) and influenza B among children aged 2-17 years, using test-negative design. Pooled data from two German federal states' surveillance systems for acute respiratory illness from week 40/2012 to 20/2016 was used, yielding a total of 10 627 specimens.

View Article and Find Full Text PDF

Introduction: In January 2013, the National Reference Centre for Salmonella (NRC) detected a salmonellosis cluster in Saxony-Anhalt, Germany, caused by uncommon O4 non-agglutinating, monophasic Salmonella (S.) Typhimurium DT193. Circulating predominant monophasic S.

View Article and Find Full Text PDF

A live attenuated influenza vaccine has been available in Germany since the influenza season 2012/13, which is approved for children aged 2-17 years. Using data from our laboratory-based surveillance system, we described the circulation of influenza and non-influenza respiratory viruses during the influenza season 2012/13 in Saxony-Anhalt. We estimated the effectiveness of live and inactivated trivalent influenza vaccines in preventing laboratory-confirmed cases among children and adolescents.

View Article and Find Full Text PDF

Although the critical role of maternal care on the development of brain and behaviour of the offspring has been extensively studied, knowledge about the importance of paternal care is comparatively scarce. In biparental species, paternal care significantly contributes to a stimulating socio-emotional family environment, which most likely also includes protection from stressful events. In the biparental caviomorph rodent Octodon degus, we analysed the impact of paternal care on the development of neurones in prefrontal-limbic brain regions, which express corticotrophin-releasing factor (CRF).

View Article and Find Full Text PDF
Article Synopsis
  • * The test-negative case-control method reviewed data from 1,749 cases of H1N1 and found a vaccine effectiveness (VE) of 79% for individuals under 14 and 70% for those over 14, while the case-series method included 73,280 cases showing a VE of 87% for under 14 and 74% for over 14.
  • * Both methods reflected similar VE results across age groups, indicating that the vaccine appeared to be more effective in younger individuals. *
View Article and Find Full Text PDF

The aim of this study in the biparental rodent Octodon degus was to assess the impact of paternal deprivation on neuronal and synaptic development in the orbitofrontal cortex, a prefrontal region which is essential for emotional and cognitive function. On the behavioral level the quantitative comparison of parental behaviors in biparental and single-mother families revealed that (i) degu fathers significantly participate in parental care and (ii) single-mothers do not increase their maternal care to compensate the lack of paternal care. On the brain structural level we show in three-week-old father-deprived animals that layer II/III pyramidal neurons in the orbitofrontal cortex displayed significantly lower spine densities on apical and basal dendrites.

View Article and Find Full Text PDF

The impact of juvenile stress exposure on astrocyte plasticity was assessed in the precocious rodent Octodon degus. Astrocytes expressing S100ss and glial fibrillary acidic protein (GFAP) were quantified in the limbic medial prefrontal cortex (mPFC), including the anterior cingulate (ACd), precentral medial (PrCm), infra- (IL) and prelimbic (PL) cortex and in the "non-limbic" somatosensory cortex (SSC). At the age of 21 days we compared (i) controls (C), (ii) stressed animals (SSR: separation stress/short reunion), which were exposed to 6 h separation from the family, followed by 1 h reunion with the family and (iii) stressed animals (SER: separation stress/extended reunion), which were stressed like group SSR but exposed to 48 h reunion.

View Article and Find Full Text PDF

The interactions between the mother/parents and their offspring provides socioemotional input, which is essential for the establishment and maintenance of synaptic networks in prefrontal and limbic brain regions. Since glial cells are known to play an important role in developmental and experience-driven synaptic plasticity, the effect of an early adverse emotional experience induced by maternal separation for 1 or 6 h on the expression of the glia specific proteins S100beta and glial fibrillary acidic protein (GFAP) was quantitatively analyzed in anterior cingulate cortex, hippocampus, and precentral medial cortex. Three animal groups were analyzed at postnatal day 14: (i) separated for 1 h; (ii) separated for 6 h; (iii) undisturbed (control).

View Article and Find Full Text PDF

Emotional experience during early life has been shown to interfere with the development of excitatory synaptic networks in the prefrontal cortex, hippocampus, and the amygdala of rodents and primates. The aim of the present study was to investigate a developmental "homoeostatic synaptic plasticity" hypothesis and to test whether stress-induced changes of excitatory synaptic composition are counterbalanced by parallel changes of inhibitory synaptic networks. The impact of repeated early separation stress on the development of two GABAergic neuronal subpopulations was quantitatively analyzed in the brain of the semiprecocial rodent Octodon degus.

View Article and Find Full Text PDF

Dendritic spines are assumed to constitute the locus of neuronal plasticity, and considerable effort has been focused on attempts to demonstrate that new memories are associated with the formation of new spines. However, few studies that have documented the appearance of spines after exposure to plasticity-producing paradigms could demonstrate that a new spine is touched by a bona fida presynaptic terminal. Thus, the functional significance of plastic dendritic spine changes is not clearly understood.

View Article and Find Full Text PDF

Experimental studies in various animal models have revealed convincing evidence that stressful experience during early developmental periods produces a variety of behavioral, neuroanatomical and endocrine alterations, which are reminiscent of human mental disorders such as depression and various types of anxiety disorders. Since these mental disorders are assumed to be associated with altered GABAergic inhibition in cortical and subcortical brain regions, the current study tested the hypothesis that early postnatal adverse emotional experience (separation stress) interferes with the establishment and functional maturation of distinct inhibitory interneuron populations in different subregions of the medial prefrontal cortex (mPFC) of the precocious rodent degu (Octodon degus). At the age around puberty early stressed animals displayed significantly lower densities of calbindin-D28k-immunoreactive interneurons in the anterior cingulate (down to 79%) and in the precentral medial (down to 64%) subregions of the mPFC compared with age-matched unstressed controls.

View Article and Find Full Text PDF

Evidence is accumulating that early emotional experience interferes with the development of the limbic system, which is involved in perception and regulation of emotional behaviors as well as in learning and memory formation. Limbic brain regions, as well as hypothalamic regions and other, nonlimbic areas contain specific neuron subpopulations, which express and release corticotropin releasing factor (CRF). Since these neurons serve to connect limbic function to endocrine, stress-related responses, we proposed that stressful experience during early postnatal brain development should interfere with the development of CRF-containing neurons, particularly in brain regions essential for emotional regulation.

View Article and Find Full Text PDF

Decades of research in the area of developmental psychobiology have shown that early life experience alters behavioral and brain development, which canalizes development to suit different environments. Recent methodological advances have begun to identify the mechanisms by which early life experiences cause these diverse adult outcomes. Here we present four different research programs that demonstrate the intricacies of early environmental influences on behavioral and brain development in both pathological and normal development.

View Article and Find Full Text PDF

Exposure to enriched or impoverished environmental conditions, experience and learning are factors which influence brain development, and it has been shown that neonatal emotional experience significantly interferes with the synaptic development of higher associative forebrain areas. Here, we analyzed the impact of paternal care, i.e.

View Article and Find Full Text PDF

A quantitative anatomical study in the rodent anterior cingulate and somatosensory cortex, hippocampus, and lateral amygdala revealed region-, cell-, and dendrite-specific changes of spine densities in 3-week-old Octodon degus after repeated parental separation. In parentally separated animals significantly higher spine densities were found on the apical and basal dendrites of the cingulate cortex (up to 143% on apical and 138% on basal dendrite). Branching order analysis revealed that this effect is seen on all segments of the apical dendrite, whereas on the basal dendrites significantly higher spine densities were seen only on the outer branches (third to fifth dendritic segments).

View Article and Find Full Text PDF

Analogous to the experience-driven development of sensory systems, the functional maturation of limbic circuits is significantly influenced by early socio-emotional experience. In a combined light and electron microscopic study in the anterior cingulate cortex of Octodon degus, the densities of spine and shaft synapses on apical dendrites of layer III pyramidal neurons were compared in 45 day old (1) undisturbed control animals; (2) handled animals; (3) animals which were repeatedly maternally deprived during the first three postnatal weeks; (4) animals which were treated similarly to group 3 and thereafter kept in chronic social isolation. Animals in groups 2-4 showed significantly higher spine densities (up to 121%, 142% and 151% respectively) compared to control group 1.

View Article and Find Full Text PDF

It appears likely that, in analogy to the synaptic development of sensory and motor cortices, which critically depends on sensory or motor stimulation (Rosenzweig and Bennett, 1996), the synaptic development of limbic cortical regions are modulated by early postnatal cognitive and emotional experiences. The very first postnatal experience, which takes place in a confined and stable familial environment, is the interaction of the newborn individual with the parents and siblings (Gray, 1958). The aim of this quantitative morphological study was to analyze the impact of different degrees of juvenile emotional experience on the synaptic development in a limbic cortical area, the dorsal anterior cingulate cortex, a region which is involved in the perception and regulation of emotions.

View Article and Find Full Text PDF