Publications by authors named "Hellmut Merkle"

Magnetic Resonance Imaging (MRI) can provide the location and signal characteristics of pathological regions within a postmortem tissue block, thereby improving the efficiency of histopathological studies. However, such postmortem-MRI guided histopathological studies have so far only been performed on fixed samples as imaging tissue frozen at the time of extraction, while preserving its integrity, is significantly more challenging. Here we describe the development of cold-postmortem-MRI, which can preserve tissue integrity and help target techniques such as transcriptomics.

View Article and Find Full Text PDF

Real-time visualization of metabolic processes in vivo provides crucial insights into conditions like cancer and metabolic disorders. Metabolic magnetic resonance imaging (MRI), by amplifying the signal of pyruvate molecules through hyperpolarization, enables non-invasive monitoring of metabolic fluxes, aiding in understanding disease progression and treatment response. Signal Amplification By Reversible Exchange (SABRE) presents a simpler, cost-effective alternative to dissolution dynamic nuclear polarization, eliminating the need for expensive equipment and complex procedures.

View Article and Find Full Text PDF

Introduction: Postmortem MRI provides insight into location of pathology within tissue blocks, enabling efficient targeting of histopathological studies. While postmortem imaging of fixed tissue is gaining popularity, imaging tissue frozen at the time of extraction is significantly more challenging.

Methods: Tissue integrity was examined using RNA integrity number (RIN), in mouse brains placed between -20 °C and 20 °C for up to 24 hours, to determine the highest temperature that could potentially be used for imaging without tissue degeneration.

View Article and Find Full Text PDF

Hyperpolarized (HP) carbon-13 [C] enables the specific investigation of dynamic metabolic and physiologic processes via in vivo MRI-based molecular imaging. As the leading HP metabolic agent, [1-C]pyruvate plays a pivotal role due to its rapid tissue uptake and central role in cellular energetics. Dissolution dynamic nuclear polarization (d-DNP) is considered the gold standard method for the production of HP metabolic probes; however, development of a faster, less expensive technique could accelerate the translation of metabolic imaging via HP MRI to routine clinical use.

View Article and Find Full Text PDF

Blood-oxygenation-level-dependent functional magnetic resonance imaging (BOLD fMRI) of cortical layers relies on the hemodynamic response and is biased toward large veins on the cortical surface. Functional changes in the cerebral metabolic rate of oxygen (ΔCMRO) may reflect neural cortical function better than BOLD fMRI, but it is unknown whether the calibrated BOLD model for functional CMRO measurement remains valid at high resolution. Here, we measure laminar ΔCMRO elicited by visual stimulation in macaque primary visual cortex (V1) and find that ΔCMRO peaks in the middle of the cortex, in agreement with autoradiographic measures of metabolism.

View Article and Find Full Text PDF

In vivo deuterated water (HO) labeling leads to deuterium (H) incorporation into biomolecules of proliferating cells and provides the basis for its use in cell kinetics research. We hypothesized that rapidly proliferating cancer cells would become preferentially labeled with H and, therefore, could be visualized by deuterium magnetic resonance imaging (dMRI) following a brief period of in vivo systemic HO administration. We initiated systemic HO administration in two xenograft mouse models harboring either human colorectal, HT-29, or pancreatic, MiaPaCa-2, tumors and HO level of ~ 8% in total body water (TBW).

View Article and Find Full Text PDF

We develop magnetic resonance (MR) methods for real-time measurement of tissue microstructure and membrane permeability of live and fixed excised neonatal mouse spinal cords. Diffusion and exchange MR measurements are performed using the strong static gradient produced by a single-sided permanent magnet. Using tissue delipidation methods, we show that water diffusion is restricted solely by lipid membranes.

View Article and Find Full Text PDF
Article Synopsis
  • Metabolic variations within and among tumors significantly influence cancer treatment outcomes, but non-invasive methods to assess these differences are limited.
  • The study focuses on pancreatic ductal adenocarcinoma, showing that tumors with the same genetic makeup can be differentiated by their rates of 13C labeled glucose metabolism using advanced imaging techniques.
  • This imaging approach reveals unique metabolic profiles and regions of lactate production in tumors, highlighting tumor heterogeneity that conventional methods like FDG-PET may fail to detect.
View Article and Find Full Text PDF
Article Synopsis
  • MRI diagnosis can be improved by using contrast agents to enhance signal contrast, but traditional methods still face challenges with sensitivity.
  • Researchers developed a new T- T dual-modal MRI contrast agent using an albumin-binding molecule and manganese ion, significantly improving imaging at high magnetic fields.
  • This dual-modal approach enhances signal-to-noise and contrast-to-noise ratios in imaging, reducing false positives and artifacts, and may revolutionize MRI diagnostics in precision medicine.
View Article and Find Full Text PDF
Article Synopsis
  • * C magnetic resonance spectroscopy (MRS) offers potential advantages for detecting metabolism changes but struggles with low sensitivity, mainly used in single voxel measurements, unless enhanced by complex methods like dDNP.
  • * A new method using MRI chemical shift imaging (CSI) with advanced post-processing via tensor decomposition significantly boosts signal-to-noise ratio, allowing effective imaging of glucose metabolism and the Warburg effect without needing hyperpolarization, achieving great spatial and temporal resolution.
View Article and Find Full Text PDF

Understanding the spatiotemporal features of the hemodynamic response function (HRF) to brain stimulation is essential for the correct application of neuroimaging methods to study brain function. Here, we investigated the spatiotemporal evolution of the blood oxygen level-dependent (BOLD) and cerebral blood volume (CBV) HRF in conscious, awake marmosets (Callithrix jacchus), a New World non-human primate with a lissencephalic brain and with growing use in biomedical research. The marmosets were acclimatized to head fixation and placed in a 7-T magnetic resonance imaging (MRI) scanner.

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation (HSCT) offers a cure for cancers that are refractory to chemotherapy and radiation. Most HSCT recipients develop chronic graft-versus-host disease (cGVHD), a systemic alloimmune attack on host organs. Diagnosis is based on clinical signs and symptoms, as biopsies are risky.

View Article and Find Full Text PDF

OBJECTIVE Pituitary MR imaging fails to detect over 50% of microadenomas in Cushing's disease and nearly 80% of cases of dural microinvasion. Surface coils can generate exceptionally high-resolution images of the immediately adjacent tissues. To improve imaging of the pituitary gland, a receive-only surface coil that can be placed within the sphenoid sinus (the endosphenoidal coil [ESC]) during transsphenoidal surgery (TSS) was developed and assessed.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) sensitivity approaches vessel specificity. We developed a single-vessel functional MRI (fMRI) method to image the contribution of vascular components to blood oxygenation level-dependent (BOLD) and cerebral blood volume (CBV) fMRI signal. We mapped individual vessels penetrating the rat somatosensory cortex with 100-ms temporal resolution by MRI with sensory or optogenetic stimulation.

View Article and Find Full Text PDF

Recently, several new functional (f)MRI contrast mechanisms including diffusion, phase imaging, proton density, etc. have been proposed to measure neuronal activity more directly and accurately than blood-oxygen-level dependent (BOLD) fMRI. However, these approaches have proved difficult to reproduce, mainly because of the dearth of reliable and robust test systems to vet and validate them.

View Article and Find Full Text PDF

Purpose: We tested the feasibility of implementing parallel transmission (pTX) for high-field MRI using a radiofrequency (RF) amplifier design to be located on or in the immediate vicinity of an RF transmit coil.

Method: We designed a current-source switch-mode amplifier based on miniaturized, nonmagnetic electronics. Optical RF carrier and envelope signals to control the amplifier were derived, through a custom-built interface, from the RF source accessible in the scanner control.

View Article and Find Full Text PDF

Purpose: The goal of this study was to explore the feasibility of using an array of electric dipole antennas for RF transmission in spine MRI at high fields.

Method: A two-channel transmit array based on an electric dipole design was quantitatively optimized for 7T spine imaging and integrated with a receive array combining eight loop coils. Using B1+ mapping, the transmit efficiency of the dipole array was compared with a design using quadrature loop pairs.

View Article and Find Full Text PDF

Aims: The tumor microenvironment is characterized by a highly reducing redox status, a low pH, and hypoxia. Anti-angiogenic therapies for solid tumors frequently function in two steps: the transient normalization of structurally and functionally aberrant tumor blood vessels with increased blood perfusion, followed by the pruning of tumor blood vessels and the resultant cessation of nutrients and oxygen delivery required for tumor growth. Conventional anatomic or vascular imaging is impractical or insufficient to distinguish between the two steps of tumor response to anti-angiogenic therapies.

View Article and Find Full Text PDF

Calcium-sensitive MRI contrast agents can only yield quantitative results if the agent concentration in the tissue is known. The agent concentration could be determined by diffusion modeling, if relevant parameters were available. We have established an MRI-based method capable of determining diffusion properties of conventional and calcium-sensitive agents.

View Article and Find Full Text PDF

BACKGROUND Magnetic resonance imaging (MRI) can provide in vivo assessment of tissue damage, allowing evaluation of multiple sclerosis (MS) lesion evolution over time--a perspective not obtainable with postmortem histopathology. Relapsing-remitting experimental autoimmune encephalomyelitis (EAE) is an experimental model of MS that can be induced in the common marmoset, a small new world primate, and that causes perivenular white matter (WM) lesions similar to those observed in MS. METHODS Brain lesion development and evolution were studied in vivo and postmortem in four marmosets with EAE through serial T2- and T2*-weighted scans at 7-tesla.

View Article and Find Full Text PDF

fMRI has established itself as the main research tool in neuroscience and brain cognitive research. The common marmoset (Callithrix jacchus) is a non-human primate model of increasing interest in biomedical research. However, commercial MRI coils for marmosets are not generally available.

View Article and Find Full Text PDF

MRI at high field can be sensitized to the magnetic properties of tissues, which introduces a signal dependence on the orientation of white matter (WM) fiber bundles relative to the magnetic field. In addition, study of the NMR relaxation properties of this signal has indicated contributions from compartmentalized water environments inside and outside the myelin sheath that may be separable. Here we further investigated the effects of water compartmentalization on the MRI signal with the goal of extracting compartment-specific information.

View Article and Find Full Text PDF

The six cortical layers have distinct anatomical and physiological properties, like different energy use and different feedforward and feedback connectivity. It is not known if and how layer-specific neural processes are reflected in the fMRI signal. To address this question we used high-resolution fMRI to measure BOLD, CBV, and CBF responses to stimuli that elicit positive and negative BOLD signals in macaque primary visual cortex.

View Article and Find Full Text PDF

The hypoxic nature of tumors results in treatment resistance and poor prognosis. To spare limited oxygen for more crucial pathways, hypoxic cancerous cells suppress mitochondrial oxidative phosphorylation and promote glycolysis for energy production. Thereby, inhibition of glycolysis has the potential to overcome treatment resistance of hypoxic tumors.

View Article and Find Full Text PDF

Previous authors have shown that the transverse relaxivity R(2)* and frequency shifts that characterize gradient echo signal decay in magnetic resonance imaging are closely associated with the distribution of iron and myelin in the brain's white matter. In multiple sclerosis, iron accumulation in brain tissue may reflect a multiplicity of pathological processes. Hence, iron may have the unique potential to serve as an in vivo magnetic resonance imaging tracer of disease pathology.

View Article and Find Full Text PDF