Prevention of autonomous division of the egg apparatus and central cell in a female gametophyte before fertilization ensures successful reproduction in flowering plants. Here we show that rice ovules of Polycomb repressive complex 2 (PRC2) Osfie1 and Osfie2 double mutants exhibit asexual embryo and autonomous endosperm formation at a high frequency, while ovules of single Osfie2 mutants display asexual pre-embryo-like structures at a lower frequency without fertilization. Earlier onset, higher penetrance and better development of asexual embryos in the double mutants compared with those in Osfie2 suggest that the autonomous endosperm facilitated asexual embryo development.
View Article and Find Full Text PDFThe reproductive success of many plants depends on their capacity to respond appropriately to their environment. One environmental cue that triggers flowering is the extended cold of winter, which promotes the transition from vegetative to reproductive growth in a response known as vernalization. In annual plants of the , the floral repressor, (), is downregulated by exposure to low temperatures.
View Article and Find Full Text PDFStudy Question: Can the priorities for future research in infertility be identified?
Summary Answer: The top 10 research priorities for the four areas of male infertility, female and unexplained infertility, medically assisted reproduction and ethics, access and organization of care for people with fertility problems were identified.
What Is Known Already: Many fundamental questions regarding the prevention, management and consequences of infertility remain unanswered. This is a barrier to improving the care received by those people with fertility problems.
Brassica rapa L. is an important vegetable and oilseed crop. We investigated the distribution of the histone mark tri-methylation of H3K27 (H3K27me3) in B.
View Article and Find Full Text PDFDisruption of gene silencing by Polycomb protein complexes leads to homeotic transformations and altered developmental-phase identity in plants. Here we define short genomic fragments, known as Polycomb response elements (PREs), that direct Polycomb repressive complex 2 (PRC2) placement at developmental genes regulated by silencing in Arabidopsis thaliana. We identify transcription factor families that bind to these PREs, colocalize with PRC2 on chromatin, physically interact with and recruit PRC2, and are required for PRC2-mediated gene silencing in vivo.
View Article and Find Full Text PDFEndosperm cellularization is essential for embryo development and viable seed formation. Loss of function of the FERTILIZATION INDEPENDENT SEED (FIS) class Polycomb genes, which mediate trimethylation of histone H3 lysine27 (H3K27me3), as well as imbalanced contributions of parental genomes interrupt this process. The causes of the failure of cellularization are poorly understood.
View Article and Find Full Text PDFVernalization is the promotion of flowering in response to prolonged exposure to low temperatures. In Arabidopsis, FLOWERING LOCUS C (FLC), a suppressor of flowering, is repressed by low temperatures but the mechanism leading to the initial decrease in FLC transcription remains a mystery. No mutants that block the repression of FLC at low temperatures have been identified to date.
View Article and Find Full Text PDFRNA-immunoprecipitation (RNA-IP) is a method used to isolate and identify RNA molecules specifically associated with an RNA-binding protein. Non-coding RNAs are emerging as key regulators of many biological and developmental pathways and RNA-IP has become an important tool in studying their function(s). While RNA-IP is successfully used to determine protein-RNA interaction, specific details regarding the level of this association and the metabolic requirement of this interaction which can influence the success of RNA-IP remain unclear.
View Article and Find Full Text PDFShort noncoding RNAs have been demonstrated to play important roles in regulation of gene expression and stress responses, but the repertoire and functions of long noncoding RNAs (lncRNAs) remain largely unexplored, particularly in plants. To explore the role of lncRNAs in disease resistance, we used a strand-specific RNA-sequencing approach to identify lncRNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana. Antisense transcription was found in c.
View Article and Find Full Text PDFBackground: Polycomb Repressive Complex 2 (PRC2) is an essential regulator of gene expression that maintains genes in a repressed state by marking chromatin with trimethylated Histone H3 lysine 27 (H3K27me3). In Arabidopsis, loss of PRC2 function leads to pleiotropic effects on growth and development thought to be due to ectopic expression of seed and embryo-specific genes. While there is some understanding of the mechanisms by which specific genes are targeted by PRC2 in animal systems, it is still not clear how PRC2 is recruited to specific regions of plant genomes.
View Article and Find Full Text PDFBackground: The transitions from juvenile to adult and adult to reproductive phases of growth are important stages in the life cycle of plants. The regulators of these transitions include miRNAs, in particular miR156 and miR172 which are part of a regulatory module conserved across the angiosperms. In Arabidopsis miR171 represses differentiation of axillary meristems by repressing expression of SCARECROW-LIKE(SCL) transcription factors, however the role of miR171 has not been examined in other plants.
View Article and Find Full Text PDFDrosophila possesses the core gene silencing machinery but, like all insects, lacks the canonical RNA-dependent RNA polymerases (RdRps) that in C. elegans either trigger or enhance two major small RNA-dependent gene silencing pathways. Introduction of two different nematode RdRps into Drosophila showed them to be functional, resulting in differing silencing activities.
View Article and Find Full Text PDFEmbryonic Stem (ES) cells are able to give rise to the three germ layers of the embryo but are prevented from contributing to the trophoblast. The molecular nature of this barrier between embryonic and trophectodermal cell fates is not clear, but is known to involve DNA methylation. Here we demonstrate that the Nucleosome Remodeling and Deacetylation (NuRD) co-repressor complex maintains the developmental barrier between embryonic and trophectodermal cell fates by maintaining transcriptional silencing of trophectoderm determinant genes in ES cells.
View Article and Find Full Text PDFWe analyzed the dynamic defense transcriptome responsive to Fusarium oxysporum infection in Arabidopsis using a strand-specific RNA-sequencing approach. Following infection, 177 and 571 genes were up-regulated, 30 and 125 genes were down-regulated at 1 day-post-inoculation (1DPI) and 6DPI, respectively. Of these genes, 116 were up-regulated and seven down-regulated at both time points, suggesting that most genes up-regulated at the early stage of infection tended to be constantly up-regulated at the later stage whereas the landscape of the down-regulated genes differed significantly at the two time points investigated.
View Article and Find Full Text PDFBackground: During the early stages of seed development many genes are under dynamic regulation to ensure the proper differentiation and establishment of the tissue that will constitute the mature grain. To investigate how miRNA regulation contributes to this process in barley, a combination of small RNA and mRNA degradome analyses were used to identify miRNAs and their targets.
Results: Our analysis identified 84 known miRNAs and 7 new miRNAs together with 96 putative miRNA target genes regulated through a slicing mechanism in grain tissues during the first 15 days post anthesis.
Methods Mol Biol
November 2012
Small interfering RNAs (siRNAs) and microRNAs (miRNAs) are non-coding regulatory RNAs that play an important role in development and genome stability in plants. Conventional cloning and sequencing approaches have identified hundreds of miRNAs and a large number of siRNAs, but are no longer the best choices for identification of new miRNAs which are generally expressed at low abundance. The development of next-generation sequencing technologies has provided a powerful platform for the discovery of these small but vital RNA molecules.
View Article and Find Full Text PDFThe recovery of information from indirect measurements takes different forms depending on the sophistication with which the process being researched can be modelled mathematically. The forms range from (1) the historical and classical inverse problems regularization situation where explicit models which guaranteed existence and uniqueness have been formulated, through (2) situations where model formulation is performed implicitly as a calibration-and-prediction ansatz, to (3) the exploratory (biology) situation where the underlying mechanism is unknown and constraining information about its dynamics is being sought through appropriate experimentation. Each represents a different aspect of the solution of inverse problems.
View Article and Find Full Text PDFThe repression of Arabidopsis FLC expression by vernalization (extended cold) has become a model for understanding polycomb-associated epigenetic regulation in plants. Antisense and sense non-coding RNAs have been respectively implicated in initiation and maintenance of FLC repression by vernalization. We show that the promoter and first exon of the FLC gene are sufficient to initiate repression during vernalization; this initial repression of FLC does not require antisense transcription.
View Article and Find Full Text PDFMutants in the rice PLASTOCHRON 3 and maize VIVIPAROUS 8 genes have been shown to have reduced dormancy and ABA levels. In this study we used several mutants in the orthologous gene ALTERED MERISTEM PROGRAM 1 (AMP1) to determine its role in seed dormancy in Arabidopsis. Here we report that there are accession-specific effects of mutations in AMP1.
View Article and Find Full Text PDFFLOWERING LOCUS C (FLC) has a key role in the timing of the initiation of flowering in Arabidopsis. FLC binds and represses two genes that promote flowering, FT and SOC1. We show that FLC binds to many other genes, indicating that it has regulatory roles other than the repression of flowering.
View Article and Find Full Text PDFIn this review we have analysed two major biological systems involving epigenetic control of gene activity. In the first system we demonstrate the interplay between genetic and epigenetic controls over the transcriptional activity of FLC, a major repressor of flowering in Arabidopsis. FLC is down-regulated by low temperature treatment (vernalisation) releasing the repressor effect on flowering.
View Article and Find Full Text PDFBackground: The use of high-throughput sequencing in combination with chromatin immunoprecipitation (ChIP-seq) has enabled the study of genome-wide protein binding at high resolution. While the amount of data generated from such experiments is steadily increasing, the methods available for their analysis remain limited. Although several algorithms for the analysis of ChIP-seq data have been published they focus almost exclusively on transcription factor studies and are usually not well suited for the analysis of other types of experiments.
View Article and Find Full Text PDFThe FLC gene encodes a MADS box repressor of flowering that is the main cause of the late-flowering phenotype of many Arabidopsis ecotypes. Expression of FLC is repressed by vernalization; maintenance of this repression is associated with the deposition of histone 3 K27 trimethylation (H3K27me3) at the FLC locus. However, whether this increased H3K27me3 is a consequence of reduced FLC transcription or the cause of transcriptional repression is not well defined.
View Article and Find Full Text PDFVernalization, the promotion of flowering in response to low temperatures, is one of the best characterized examples of epigenetic regulation in plants. The promotion of flowering is proportional to the duration of the cold period, but the mechanism by which plants measure time at low temperatures has been a long-standing mystery. We show that the quantitative induction of the first gene in the Arabidopsis vernalization pathway, VERNALIZATION INSENSITIVE 3 (VIN3), is regulated by the components of Polycomb Response Complex 2, which trimethylates histone H3 lysine 27 (H3K27me3).
View Article and Find Full Text PDFSince the discovery of miRNAs in plants it has become clear that they are central to the regulation of many aspects of plant development and responses to the environment. miR172 regulates expression of a small group of AP2-like transcription factors in an evolutionarily ancient interaction. miR172 functions in regulating the transitions between developmental stages and in specifying floral organ identity.
View Article and Find Full Text PDF