Publications by authors named "Hellen Karine Stulzer"

This study evaluated the ability of different sweeteners to improve dissolution and to form and stabilize supersaturated solutions of griseofulvin (GSF), comparing a eutectic mixture and amorphous formulations. Among the sweeteners tested, only saccharin (SAC) was able to delay drug precipitation in buffer (area under the curve (AUC) increase of 40%) and in fasted state simulated intestinal Fluid (FaSSIF, AUC increase of 20%) compared to pure media. GSF solubility was not affected by the presence of isomalt (ISO), maltitol (MALT) and SAC in buffer pH 6.

View Article and Find Full Text PDF

The purpose of this study was to associate the poorly water-soluble antihypertensive drugs candesartan cilexetil (CC) and hydrochlorothiazide (HCTZ) as fixed-dose combination, in the form of ternary Amorphous Solid Dispersions (ASD), using hydroxypropylmethylcellulose acetate succinate (HPMCAS) type M as polymeric carrier. The potential of the system to generate and to maintain supersaturation of both drugs was also evaluated. The ASDs were prepared by ball milling technique and solid-state characterization was performed by differential scanning calorimetry (DSC), Fourier transformed infrared spectroscopy (FTIR) and X-ray powder diffraction (XRPD).

View Article and Find Full Text PDF

Background: Solid Dispersions (SDs) have been extensively used to increase the dissolution of poorly water-soluble drugs. However, there are few studies exploring SDs properties that must be considered during tablet development, like tabletability. Poorly water-soluble drugs with poor compression properties and high therapeutic doses, like gemfibrozil, are an additional challenge in the production of SDs-based tablets.

View Article and Find Full Text PDF

Eutectic mixtures have been known for a long time in the pharmaceutical field. However, its potential as a system to improve the solubility and dissolution of poorly water-soluble drugs remains little explored. Studies involving the microstructural characterization and the preparation of solid dosage forms containing eutectic mixtures are also an issue to be developed.

View Article and Find Full Text PDF

The emergence of new materials with improved antibacterial, anti-inflammatory and healing properties compared to conventional wound dressings has both social and economic appeal. In this study, novel chitosan-based (CTS) membranes containing curcumin (CUR) incorporated in Pluronic (PLU) copolymers were developed and characterized to obtain suitable properties for applications as a wound healing dressing. The mechanical, thermal, swelling, wettability, release and permeation properties were evaluated by DSC, TGA, water contact angle measurements, FTIR, fluorescence and microscopic techniques.

View Article and Find Full Text PDF

Our research group has pioneered the development of liquisolid pellets as a new drug delivery system targeting at the improvement of the dissolution rates of poorly water-soluble drugs, combining the technological and biopharmaceutical advantages of both multiparticulate and liquisolid systems. Recently, Lam and collaborators claimed the invention of "liqui-pellets" as "the emerging next-generation oral dosage form which stems from liquisolid concept in combination with pelletization technology". However, the concept of liqui-pellet is not novel.

View Article and Find Full Text PDF

Griseofulvin (GSF) is an antifungal drug that has low aqueous solubility and low oral bioavailability. Amorphous systems are capable to promote rapid drug dissolution, usually affording concentrations above drug solubility in the gastrointestinal tract (supersaturation) in order to promote better absorption. Thus, the aim of this work was to evaluate the ability of amino acids, as hydrophilic carriers, to improve drug kinetic solubilization and to stabilize GSF supersaturated solutions, as well as to stabilize GSF amorphous systems at solid-state.

View Article and Find Full Text PDF

Soluplus® (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer) is a solubilizing copolymer commonly applied as carrier in solid dispersions of poorly soluble drugs. This polymer is used to increase the apparent solubility of drugs with low aqueous solubility and consequently enhance drug absorption by the human gastrointestinal tract. To select the appropriate carrier to compose solid dispersions, in vitro supersaturation studies were applied as a pre-formulation tool, using different dissolution media.

View Article and Find Full Text PDF

Candesartan cilexetil (CC) is a poorly soluble antihypertensive drug with absorption limited by its low aqueous solubility. Aiming to generate CC supersaturation as strategy to improve its absorption and bioavailability, amorphous solid dispersions (ASDs) of CC with hydroxypropylmethylcellulose acetate succinate type M (HPMCAS M) were developed and evaluated by and techniques. The ASDs were characterized by several solid-state techniques and evaluated regarding the supersaturation generation and maintenance under conditions in biorelevant medium.

View Article and Find Full Text PDF

Efavirenz (EFZ) and tenofovir disoproxil fumarate (TDF) can be used simultaneously in the treatment of human immunodeficiency virus type1 infection. In this work the impact of TDF, a hydrophilic drug, on the solubility and dissolution rate of EFZ, a poorly water-soluble drug, was evaluated. EFZ/TDF binary mixtures in different molar ratios were prepared.

View Article and Find Full Text PDF

Liquisolid pellets (LPs) prepared by extrusion-spheronization are promising delivery systems to improve the dissolution rate of poorly water-soluble drugs. However, developing LPs for high dose drugs (e.g.

View Article and Find Full Text PDF

Solid dispersions (SDs) of chlorthalidone (CTD) are promising systems to enhance drug dissolution rate, generate and maintain drug supersaturation levels in gastrointestinal fluids. In this work, SDs of CTD were prepared by spray drying using sodium alginate (SA) as carrier. Six formulations were prepared, varying the drug loading and composition, through the combination of SA with surfactants (sodium lauryl sulfate (SLS) or polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (SOL)).

View Article and Find Full Text PDF

The drug in a solid dosage form must undergo dissolution before it is available for absorption from the gastrointestinal tract. Liquisolid system (LS) is a technology used for increasing aqueous solubility of the drugs, which has an important role in the dissolution and absorption phenomena. However, many factors can influence the performance and success of LS.

View Article and Find Full Text PDF

The USP Apparatus 3 is a compendial dissolution Apparatus that has been mainly used to assess the performance of modified-release drug products. However, this Apparatus can be applied to dissolution testing of immediate-release tablets as well, with several advantages such as lower consumption of dissolution media, reduced setup time in quality control routine, and minimized hydrodynamic issues. In this work, three immediate-release (IR) tablets containing antihypertensive drugs of different Biopharmaceutic Classification System (BCS) classes were evaluated in order to assess the possible interchangeability between the official dissolution method using typical USP Apparatus 1 or 2 and the proposed methods using USP Apparatus 3.

View Article and Find Full Text PDF

Among the strategies to improve the biopharmaceutic properties of poorly soluble drugs, Supersaturating Drug Delivery Systems like polymer-based amorphous solid dispersions (SD) have been successfully applied. The screening of appropriate polymeric carriers to compose SD is a crucial point on their development. In this study, hydroxypropylmethylcellulose (HPMC), hydroxypropylmethylcellulose acetate succinate (HPMCAS) types L, M and H and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (SOL) were evaluated by in vitro supersaturation studies regarding their anti-precipitant ability on the poorly soluble drug candesartan cilexetil (CC) under two different media, including biorelevant conditions.

View Article and Find Full Text PDF

Supersaturating drug delivery systems (SDDS), as solid dispersions (SDs), stand out among strategies to enhance bioavailability of poorly soluble drugs. After oral administration, their dissolution in gastrointestinal fluids often leads to supersaturation, which drives to a rapid and sustained absorption. Polymers and surfactants play important roles in SDs through inhibiting precipitation caused by transitions from amorphous into crystalline form, in supersaturated solutions, and also through improving SDs physical stability.

View Article and Find Full Text PDF

Mini-tablets are a new tendency in solid dosage form design for overcoming therapeutic obstacles such as impaired swallowing and polypharmacy therapy. Among their advantages, these systems offer therapeutic benefits such as dose flexibility and combined drug release patterns. The use of lipids in the formulation has also drawn considerable interest as means to modify the drug release from the dosage form.

View Article and Find Full Text PDF

The solid dispersion technique is the most effective method for improving the dissolution rate of poorly water-soluble drugs, however it depends on a suitable carrier selection. The work explored the use of the biopolymer sodium alginate (SA) as a potential carrier in solid dispersions (SD). The data demonstrated that SA was able to improve the biopharmaceutical properties of the BCS II drug telmisartan (TEL) of low solubility even using relative small drug:polymer ratio.

View Article and Find Full Text PDF

Telmisartan (TEL) was entrapped into β-cyclodextrin aiming the improvement of its biopharmaceutical properties of low solubility. A solid state grinding process was used to prepare the molecular inclusion complex (MIC) for up to 30min. The inclusion ratio of drug and β-cyclodextrin was established as 1:2 and 1:3 (mol/mol) by phase solubility study and Job Plot.

View Article and Find Full Text PDF

Acyclovir, an analog of 2'-deoxyguanosine, is one of the most important drugs in the current approved antiviral treatment. However, it's biopharmaceutical properties, contribute to acyclovir's poor oral bioavailability, which restricts the clinical use of the drug. In this view, the aim of this work was to improve the dissolution rate and intestinal permeability of acyclovir through the development of ball milling solid dispersions with the hydrophilic carriers Pluronic F68®, hydroxypropylmethyl cellulose K100M® and chitosan.

View Article and Find Full Text PDF

This paper describes the encapsulation of a high molecular weight molecule rifampicin (RIF) in sodium alginate/chitosan microparticles, which provided controlled-release when evaluated in vitro. The microparticles were prepared by the coacervation technique. To evaluate and select the best encapsulation method two approaches were applied: coacervation (MCP method 1) and impregnation (MCP method 2).

View Article and Find Full Text PDF

The poor solubility of drugs remains one of the most challenging aspects of formulation development. Aiming at improving the biopharmaceutical limitations of the calcium channel blocker nimodipine, the development of solid dispersions is proposed herein. Three different proportions of nimodipine:HPMC were tested and all of them generated amorphous solid dispersions.

View Article and Find Full Text PDF

A simple stability-indicating analytical method was developed and validated to quantify nifedipine in polymeric nanocapsule suspensions; an in vitro drug release study was then carried out. The analysis was performed using an RP C18 column, UV-Vis detection at 262 nm, and methanol-water (70 + 30, v/v) mobile phase at a flow rate of 1.2 mL/min.

View Article and Find Full Text PDF

This article describes the optimization of a peel-off facial mask formulation. An investigation was carried out on the parameters of the formulation that most affect the desirable characteristics of peel-off facial masks. Cereal alcohol had a significant effect on the drying time at concentrations of 1-12% (w/w).

View Article and Find Full Text PDF

Due to the physical-chemical and therapeutic impacts of polymorphism, its monitoring in raw materials is necessary. The purpose of this study was to develop and validate a quantitative method to determine the polymorphic content of nimodipine (NMP) raw materials based on differential scanning calorimetry (DSC). The polymorphs required for the development of the method were characterized through DSC, X-ray powder diffraction (XRPD) and Raman spectroscopy and their polymorphic identity was confirmed.

View Article and Find Full Text PDF