Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season.
View Article and Find Full Text PDFOxidative stress from ozone (O) causes plants to alter their emission of biogenic volatile organic compounds (BVOC) and their photosynthetic rate. Stress reactions from O on birch trees can result in prohibited plant growth and lead to increased BVOC emission rates as well as changes in their compound blend to emit more monoterpenes (MT) and sesquiterpenes (SQT). BVOCs take part in atmospheric reactions such as enhancing the production of secondary organic aerosols (SOA).
View Article and Find Full Text PDFInteractions in urban environment were investigated using a multidisciplinary model combination, with focus on traffic, emissions and atmospheric particles. An agent-based model was applied to simulate the evolution of unsustainable human behavior (usage of combustion-based personal vehicles) as a function of pro-environmental affordances (opportunities for sustainable choices). Scenarios regarding changes in multi-pollutant emissions were derived, and the non-linear implications to atmospheric particles were simulated with a box model.
View Article and Find Full Text PDFSecondary organic matter (SOM) formed from gaseous precursors constitutes a major mass fraction of fine particulate matter. However, there is only limited evidence on its toxicological impact. In this study, air-liquid interface cultures of human bronchial epithelia were exposed to different series of fresh and aged soot particles generated by a miniCAST burner combined with a micro smog chamber (MSC).
View Article and Find Full Text PDFEffect of three wood-decaying fungi on decomposition of spruce wood was studied in solid-state cultivation conditions for a period of three months. Two white rot species (Trichaptum abietinum and Phlebia radiata) were challenged by a brown rot species (Fomitopsis pinicola) in varying combinations. Wood decomposition patterns as determined by mass loss, carbon to nitrogen ratio, accumulation of dissolved sugars and release of volatile organic compounds (VOCs) were observed to depend on both fungal combinations and growth time.
View Article and Find Full Text PDFIn the northern hemisphere, boreal forests are a major source of biogenic volatile organic compounds (BVOCs), which drive atmospheric processes and lead to cloud formation and changes in the Earth's radiation budget. Although forest vegetation is known to be a significant source of BVOCs, the role of soil and the forest floor, and especially interannual variations in fluxes, remains largely unknown due to a lack of long-term measurements. Our aim was to determine the interannual, seasonal and diurnal dynamics of boreal forest floor volatile organic compound (VOC) fluxes and to estimate how much they contribute to ecosystem VOC fluxes.
View Article and Find Full Text PDFVolatile organic compounds (VOC) play important roles in atmospheric chemistry, plant ecology, and physiology, and biogenic VOC (BVOC) emitted by plants is the largest VOC source. Our knowledge about how environmental drivers (e.g.
View Article and Find Full Text PDFThe Amazon rainforest is the world's largest source of reactive volatile isoprenoids to the atmosphere. It is generally assumed that these emissions are products of photosynthetically driven secondary metabolism and released from the rainforest canopy from where they influence the oxidative capacity of the atmosphere. However, recent measurements indicate that further sources of volatiles are present.
View Article and Find Full Text PDFEnviron Sci Technol
September 2010
Boreal forests emit large amounts of volatile organic compounds (VOCs) which react with the hydroxyl radical (OH) to influence regional ozone levels and form secondary organic aerosol. Using OH reactivity measurements within a boreal forest in Finland, we investigated the budget of reactive VOCs. OH reactivity was measured using the comparative reactivity method, whereas 30 individual VOCs were measured using proton transfer reaction mass spectrometry, thermal-desorption gas chromatography mass spectrometry, and liquid chromatography mass spectrometry, in August 2008.
View Article and Find Full Text PDFThe inorganic main elements, trace elements and PAHs were determined from selected PM(1), PM(2.5) and PM(10) samples collected at the Nordic background station in Virolahti during different seasons and during the wildfire episodes in 2006. Submicron particles are those most harmful to human beings, as they are able to penetrate deep into the human respiratory system and may cause severe health effects.
View Article and Find Full Text PDFWe examined a new method to determine the aerosol yield of precursors of secondary organic aerosols in the presence of organic seed particles. To distinguish between the oxidation products of the compound in question and the organic seed, the compound was labeled with stable isotopes and aerosol samples were analyzed by isotope ratio mass spectrometry (IRMS). 13C labeled isoprene was obtained from isoprene emitting plants that were exposed to (13)CO2.
View Article and Find Full Text PDFProton-transfer-reaction mass spectrometry (PTR-MS) is a useful tool in ambient trace gas analysis, especially for the analysis of oxygenated volatile organic compounds (OVOC). Many OVOCs are produced during photooxidation of volatile organic compounds and contribute to both the gas phase and secondary organic aerosols (SOA). The inlet system of the PTR-MS instrument was modified to allow also for the measurement of the particulate phase of an aerosol with a high time resolution.
View Article and Find Full Text PDFThe importance of wood combustion to local air quality was estimated by measuring different air pollutants and conducting chemical mass balance modelling. PM10, PM2.5, PAHs and VOC concentrations in ambient air were measured in a typical Finnish residential area.
View Article and Find Full Text PDFAmbient air concentrations and source contributions of 71 volatile organic compounds (VOCs) including C2-C10 nonmethane hydrocarbons, halogenated hydrocarbons, and carbonyls were studied at urban and residential sites in Finland. On the basis of the emission profile and concentration measurements, the contributions of different sources were estimated using a chemical mass balance (CMB) receptor model. It was shown that it is possible to apply CMB in the case of a large number of different compounds with different properties.
View Article and Find Full Text PDFThe diffusive sampling method was evaluated for measuring benzene, toluene, ethylbenzene, xylenes, styrene, propylbenzene, ethyltoluenes, trimethylbenzenes and methyl tert-butyl ether (MTBE) in the urban air of Helsinki, Finland. Concentrations were measured in 2-week periods at four different sites during the year 2000. Tube type adsorbent tubes were pre-packed with Carbopack-B (60/80).
View Article and Find Full Text PDF