This paper presents progress made toward the overarching goal to adapt single-photon-counting microcalorimeters to magnetic fusion energy research and demonstrate the value of such measurements for fusion. Microcalorimeter spectrometers combine the best characteristics of x-ray instrumentation currently available on fusion devices: high spectral resolution similar to an x-ray crystal spectrometer and broad spectral coverage sufficient to measure impurity species from Be to W. As a proof-of-principle experiment, a NASA-built x-ray microcalorimeter spectrometer has been installed on the Madison Symmetric Torus (MST) at the Wisconsin Plasma Physics Laboratory.
View Article and Find Full Text PDFA high-fidelity synthetic diagnostic has been developed for the ITER core x-ray crystal spectrometer diagnostic based on x-ray ray tracing. This synthetic diagnostic has been used to model expected performance of the diagnostic, to aid in diagnostic design, and to develop engineering tolerances. The synthetic model is based on x-ray ray tracing using the recently developed xicsrt ray tracing code and includes a fully three-dimensional representation of the diagnostic based on the computer aided design.
View Article and Find Full Text PDFEur Phys J D At Mol Opt Phys
March 2022
Abstract: A key requirement for the correct interpretation of high-resolution X-ray spectra is that transition energies are known with high accuracy and precision. We investigate the K-shell features of , , and gases, by measuring their photo ion-yield spectra at the BESSY II synchrotron facility simultaneously with the 1s-p fluorescence emission of He-like ions produced in the Polar-X EBIT. Accurate calculations of transitions in these ions provide the basis of the calibration.
View Article and Find Full Text PDFA NASA-built x-ray microcalorimeter spectrometer has been installed on the MST facility at the Wisconsin Plasma Physics Laboratory and has recorded x-ray photons emitted by impurity ions of aluminum in a majority deuterium plasma. Much of the x-ray microcalorimeter development has been driven by the needs of astrophysics missions, where imaging arrays with few-eV spectral resolution are required. The goal of our project is to adapt these single-photon-counting microcalorimeters for magnetic fusion energy research and demonstrate the value of such measurements for fusion science.
View Article and Find Full Text PDFDuring the past few years, the Orion high-resolution x-ray spectrometers have been successful tools for measuring x-ray spectra from plasmas generated in the Orion laser facility. Duplicate spectrometers also operate successfully at the Livermore EBIT-I and SuperEBIT electron beam ion traps for measuring x-ray polarization. We have recently implemented very high-quality, optically bonded, spherically bent quartz crystals to remove the structure in the x-ray image that had been observed in earlier measurements.
View Article and Find Full Text PDFWe present absolute throughput analysis of several crystals for the Orion High-REsolution X-ray (OHREX) imaging crystal spectrometer using ray tracing and experimental measurements. The OHREX spectrometer is a high-resolution x-ray spectrometer designed to measure spectral line shapes at the Orion laser facility. The spectrometer is fielded with up to two spherical crystals simultaneously covering two independent spectral ranges.
View Article and Find Full Text PDFWe demonstrate a widely applicable technique to absolutely calibrate the energy scale of x-ray spectra with experimentally well-known and accurately calculable transitions of highly charged ions, allowing us to measure the K-shell Rydberg spectrum of molecular O_{2} with 8 meV uncertainty. We reveal a systematic ∼450 meV shift from previous literature values, and settle an extraordinary discrepancy between astrophysical and laboratory measurements of neutral atomic oxygen, the latter being calibrated against the aforementioned O_{2} literature values. Because of the widespread use of such, now deprecated, references, our method impacts on many branches of x-ray absorption spectroscopy.
View Article and Find Full Text PDFFor more than 40 years, most astrophysical observations and laboratory studies of two key soft x-ray diagnostic 2p-3d transitions, 3C and 3D, in Fe XVII ions found oscillator strength ratios f(3C)/f(3D) disagreeing with theory, but uncertainties had precluded definitive statements on this much studied conundrum. Here, we resonantly excite these lines using synchrotron radiation at PETRA III, and reach, at a millionfold lower photon intensities, a 10 times higher spectral resolution, and 3 times smaller uncertainty than earlier work. Our final result of f(3C)/f(3D)=3.
View Article and Find Full Text PDFThe Orion high-resolution X-ray (OHREX) imaging spherically bent crystal spectrometer, operated with both image plates and CCD cameras, provides time-averaged plasma diagnostics through high-resolution spectroscopy with good signal-to-noise at the Orion laser facility. In order to provide time-resolved spectra, the OHREX will be outfitted with a streak camera, and in this case, even higher signal to noise will be desired. Using the OHREX's sister instrument, the EBIT High-resolution X-ray (EBHiX) spectrometer, at the LLNL electron beam ion trap EBIT-I, we therefore compare the efficiency of a high-quality Ge (111) crystal (2 = 6.
View Article and Find Full Text PDFThe warm electron beam ion trap (WEBIT) at Lawrence Livermore National Laboratory is being developed as a pre-launch, ground calibration source for space-borne, high-throughput, high-resolution x-ray spectrometers, such as the x-ray imaging and spectroscopy mission Resolve quantum calorimeter. Historically, calibration sources for calorimeter spectrometers have relied on characteristic line emission from x-ray tubes, fluorescing metals, and radioactive sources. The WEBIT, by contrast, relies on emission from x-ray transitions in highly charged ions, for example, hydrogen-like and helium-like ions, whose energies are well known and whose line shapes are relatively simple.
View Article and Find Full Text PDFIn an electron beam ion trap (EBIT), the ions are not confined to the electron beam, but rather oscillate in and out of the beam. As a result, the ions do not continuously experience the full density of the electron beam. To determine the effective electron density, , experienced by the ions, the electron beam size, the nominal electron density , and the ion distribution around the beam, i.
View Article and Find Full Text PDFThe Orion high-resolution x-ray (OHREX) spectrometer has been a successful tool for measuring the shapes of density-broadened spectral lines produced in short-pulse heated plasmas at the Orion laser facility. We have recently outfitted the instrument with a charge-couple device (CCD) camera, which greatly increased the accuracy with which we can perform line-shift measurements. Because OHREX is located on the outside of the Orion target chamber, no provisions for the shielding of electromagnetic pulses are required.
View Article and Find Full Text PDFWe have used the EBIT-I electron beam ion trap at the Lawrence Livermore National Laboratory and a duplicate Orion High Resolution X-ray Spectrometer (OHREX) to measure the relative efficiency of a spherically bent quartz (101̄1) crystal (2d = 6.687 Å) and a spherically bent germanium (111) crystal (2d = 6.532 Å).
View Article and Find Full Text PDFWe describe a crystal spectrometer implemented on the Livermore electron beam ion traps that employ two spherically bent quartz crystals and a cryogenically cooled back-illuminated charge-coupled device detector to measure x rays with a nominal resolving power of λ/Δλ ≥ 10 000. Its focusing properties allow us to record x rays either with the plane of dispersion perpendicular or parallel to the electron beam and, thus, to preferentially select one of the two linear x-ray polarization components. Moreover, by choice of dispersion plane and focussing conditions, we use the instrument either to image the distribution of the ions within the 2 cm long trap region, or to concentrate x rays of a given energy to a point on the detector, which optimizes the signal-to-noise ratio.
View Article and Find Full Text PDFX-ray spectroscopy is a useful tool for diagnosing plasma sources due to its non-invasive nature. One such source is the dense plasma focus (DPF). Recent interest has developed to demonstrate its potential application as a soft x-ray source.
View Article and Find Full Text PDFWe characterized the dissociation fraction of a thermal dissociation atomic hydrogen source by injecting the mixed atomic and molecular output of the source into an electron beam ion trap containing highly charged ions and recording the x-ray spectrum generated by charge exchange using a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchange state-selective capture cross sections are very different for atomic and molecular hydrogen incident on the same ions, enabling a clear spectroscopic diagnostic of the neutral species.
View Article and Find Full Text PDFWe report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.
View Article and Find Full Text PDFWe have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators.
View Article and Find Full Text PDFRev Sci Instrum
November 2014
We have designed and implemented a neutral metal vapor injector on the SuperEBIT high-energy electron beam ion trap at the Lawrence Livermore National Laboratory. A horizontally directed vapor of a europium metal is created using a thermal evaporation technique. The metal vapor is then spatially collimated prior to injection into the trap.
View Article and Find Full Text PDFA high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.
View Article and Find Full Text PDFPhotoabsorption by and fluorescence of the Kα transitions in highly charged iron ions are essential mechanisms for x-ray radiation transfer in astrophysical environments. We study photoabsorption due to the main Kα transitions in highly charged iron ions from heliumlike to fluorinelike (Fe24+ to Fe17+) using monochromatic x rays around 6.6 keV at the PETRA III synchrotron photon source.
View Article and Find Full Text PDFHighly charged iron (Fe(16+), here referred to as Fe XVII) produces some of the brightest X-ray emission lines from hot astrophysical objects, including galaxy clusters and stellar coronae, and it dominates the emission of the Sun at wavelengths near 15 ångströms. The Fe XVII spectrum is, however, poorly fitted by even the best astrophysical models. A particular problem has been that the intensity of the strongest Fe XVII line is generally weaker than predicted.
View Article and Find Full Text PDFPurpose: To prospectively investigate the incremental value of multiparametric magnetic resonance (MR) imaging compared with standard T2-weighted imaging for biopsy planning.
Materials And Methods: The study was approved by the institutional review board; informed consent was obtained. Consecutive patients underwent T2-weighted imaging supplemented with multiparametric 1.
Background: Salt restriction is recommended for hypertension treatment to reduce blood pressure, but its effect on some risk factors is still a matter of discussion. The aim of this study was to observe the effect of a long period of salt restriction or overload on blood pressure, left ventricular mass (LVM), kidney mass (KM), glucose tolerance, and plasma insulin.
Methods: Male Wistar rats were fed from weaning with a low-salt diet (LSD) or a high-salt diet (HSD) until 72 weeks of age.
Although the pineal gland influences several physiological systems, only a few studies have investigated its role in the intermediary metabolism. In the present study, male Wistar rats, pinealectomized or sham-operated 6 wk before the experiment, were submitted to both intravenous glucose tolerance tests (IVGTT) and insulin binding as well as glucose transport assays in isolated adipocytes. The insulin receptor tyrosine kinase activity was assessed in liver and muscle.
View Article and Find Full Text PDF