Background: Human T-cell lymphotropic virus type 1 (HTLV-1) infection can be associated with tropical spastic paraparesis (TSP/HAM), which causes neurological myelopathy and sensory and muscle tone alterations, leading to gait and balance impairments. Once trunk perturbation is predicted, the motor control system uses anticipatory and compensatory mechanisms to maintain balance by recruiting postural muscles and displacement of the body's center of mass.
Methods: Twenty-six participants (control or infected) had lower limb muscle onset and center of pressure (COP) displacements assessed prior to perturbation and throughout the entire movement.
Social robotics represents a branch of human-robot interaction dedicated to developing systems to control the robots to operate in unstructured environments with the presence of human beings. Social robots must interact with human beings by understanding social signals and responding appropriately to them. Most social robots are still pre-programmed, not having great ability to learn and respond with actions adequate during an interaction with humans.
View Article and Find Full Text PDF