Publications by authors named "Heli Tirkkonen"

Tetracenomycins and elloramycins are polyketide natural products produced by several actinomycetes that exhibit antibacterial and anticancer activities. They inhibit ribosomal translation by binding in the polypeptide exit channel of the large ribosomal subunit. The tetracenomycins and elloramycins are typified by a shared oxidatively modified linear decaketide core, yet they are distinguished by the extent of O-methylation and the presence of a 2',3',4'-tri-methyl-α-l-rhamnose appended at the 8-position of elloramycin.

View Article and Find Full Text PDF

soil bacteria produce hundreds of anthracycline anticancer agents with a relatively conserved set of genes. This diversity depends on the rapid evolution of biosynthetic enzymes to acquire novel functionalities. Previous work has identified -adenosyl-l-methionine-dependent methyltransferase-like proteins that catalyze 4-O-methylation, 10-decarboxylation, or 10-hydroxylation, with additional differences in substrate specificities.

View Article and Find Full Text PDF

Microbial natural products are an important source of chemical entities for drug discovery. Recent advances in understanding the biosynthesis of secondary metabolites has revealed how this rich chemical diversity is generated through functional differentiation of biosynthetic enzymes. For instance, investigations into anthracycline anticancer agents have uncovered distinct S-adenosyl methionine (SAM)-dependent proteins: DnrK is a 4-O-methyltransferase involved in daunorubicin biosynthesis, whereas RdmB (52% sequence identity) from the rhodomycin pathway catalyzes 10-hydroxylation.

View Article and Find Full Text PDF