Background & Aims: Gastrointestinal polyposis is a common clinical problem, yet there is no consensus on how to best manage patients with moderate-load polyposis. Identifying genetic features of this disorder could improve management and especially surveillance of these patients. We sought to determine the prevalence of hamartomatous polyposis-associated mutations in the susceptibility genes PTEN, BMPR1A, SMAD4, ENG, and STK11 in individuals with ≥5 gastrointestinal polyps, including at least 1 hamartomatous or hyperplastic/serrated polyp.
View Article and Find Full Text PDFBackground & Aims: Familial visceral myopathy (FVM) is a rare inherited form of myopathic pseudo-obstruction; little is known about the genetic factors that cause this disorder. FVM is characterized by impaired functions of enteric smooth muscle cells, resulting in abnormal intestinal motility, severe abdominal pain, malnutrition, and even death. We searched for genetic factors that might cause this disorder.
View Article and Find Full Text PDFUterine leiomyomas, or fibroids, are benign tumors that affect millions of women worldwide and that can cause considerable morbidity. To study the genetic basis of this tumor type, we examined 18 uterine leiomyomas derived from 17 different patients by exome sequencing and identified tumor-specific mutations in the mediator complex subunit 12 (MED12) gene in 10. Through analysis of 207 additional tumors, we determined that MED12 is altered in 70% (159 of 225) of tumors from a total of 80 patients.
View Article and Find Full Text PDFGermline mutations in the FH gene encoding the Krebs cycle enzyme fumarate hydratase predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome. FH-deficient cells and tissues accumulate high levels of fumarate, which may act as an oncometabolite and contribute to tumourigenesis. A recently proposed role for fumarate in the covalent modification of cysteine residues to S-(2-succinyl) cysteine (2SC) (termed protein succination) prompted us to assess 2SC levels in our existing models of HLRCC.
View Article and Find Full Text PDFA strong clustering of Hodgkin lymphoma in certain families has been long acknowledged. However, the genetic factors in the background of familial Hodgkin lymphoma are largely unknown. We have studied a family of 4 cousins with a rare subtype of the disease, nodular lymphocyte predominant Hodgkin lymphoma.
View Article and Find Full Text PDFDefects in the mismatch repair system lead to microsatellite instability (MSI), a feature observed in ∼ 15% of all colorectal cancers (CRCs). Microsatellite mutations that drive tumourigenesis, typically inactivation of tumour suppressors, are selected for and are frequently detected in MSI cancers. Here, we evaluated somatic mutations in microsatellite repeats of 790 genes chosen based on reduced expression in MSI CRC and existence of a coding mononucleotide repeat of 6-10 bp in length.
View Article and Find Full Text PDFHereditary leiomyomatosis and renal cell cancer (HLRCC, also known as multiple cutaneous and uterine leiomyomatosis, MCUL) is a highly penetrant autosomal dominant tumor predisposition syndrome characterized by benign leiomyomas of the skin and the uterus. Renal cell carcinomas, occurring in a subset of the HLRCC families, are exceptionally aggressive. Therefore careful, frequent surveillance strategies are recommended.
View Article and Find Full Text PDFFrameshift mutations frequently accumulate in microsatellite-unstable colorectal cancers (MSI CRCs) typically leading to downregulation of the target genes due to nonsense-mediated messenger RNA decay. However, frameshift mutations that occur in the 3' end of the coding regions can escape decay, which has largely been ignored in previous works. In this study, we characterized nonsense-mediated decay-escaping frameshift mutations in MSI CRC in an unbiased, genome wide manner.
View Article and Find Full Text PDFMutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene have been shown to predispose to pituitary adenoma predisposition, a condition characterized by growth hormone (GH)-secreting pituitary tumors. To study AIP-mediated tumorigenesis, we generated an Aip mouse model. Heterozygous mice developed normally but were prone to pituitary adenomas, in particular to those secreting GH.
View Article and Find Full Text PDFThe circadian clock regulates daily variations in physiologic processes. CLOCK acts as a regulator in the circadian apparatus controlling the expression of other clock genes, including PER1. Clock genes have been implicated in cancer-related functions; in this work, we investigated CLOCK as a possible target of somatic mutations in microsatellite unstable colorectal cancers.
View Article and Find Full Text PDFHereditary leiomyomatosis and renal cell cancer (HLRCC) is a tumor predisposition syndrome with cutaneous and uterine leiomyomatosis as well as renal cell cancer (RCC) as its clinical manifestations. HLRCC is caused by heterozygous germline mutations in the fumarate hydratase (fumarase) gene. In this study, we used array comparative genomic hybridization to identify the specific copy number changes characterizing the HLRCC-associated RCCs.
View Article and Find Full Text PDFHereditary leiomyomatosis and renal cell cancer (HLRCC) is a syndrome predisposing to cutaneous and uterine leiomyomatosis as well as renal cell cancer and uterine leiomyosarcoma. Heterozygous germline mutations in the fumarate hydratase (FH, fumarase) gene are known to cause HLRCC. On occasion, no FH mutation is detected by direct sequencing, despite the evident HLRCC phenotype in a family.
View Article and Find Full Text PDFFumarate hydratase (FH) is an enzyme of the mitochondrial tricarboxylic acid cycle (TCAC). Here we report the characterization of a novel FH variant (FHv) that contains an alternative exon 1b, thus lacking the mitochondrial signal sequence. Distinct from mitochondrial FH, FHv localized to cytosol and nucleus and lacked FH enzyme activity.
View Article and Find Full Text PDFGermline mutations in nuclear genes encoding mitochondrial enzymes fumarate hydratase (FH) and succinate dehydrogenase (subunits SDHB/C/D) have been implicated in the development of tumor syndromes referred to as hereditary leiomyomatosis and renal cell cancer (HLRCC) and hereditary paragangliomatosis (HPGL), respectively. FH and SDH are operating in the tricarboxylic acid cycle (the TCA cycle, the Krebs cycle). In the FH and SDH deficient tumors, accumulation of the substrates, fumarate and succinate, has been shown to cause stabilization of hypoxia inducible factor 1 alpha (HIF1 alpha).
View Article and Find Full Text PDFHereditary leiomyomatosis and renal cell cancer (HLRCC) is a tumor predisposition syndrome caused by mutations in the fumarate hydratase (FH) gene. HLRCC is characterized by uterine and cutaneous leiomyomas, renal cell cancer, and uterine leiomyosarcoma. Typically, renal cell cancers in HLRCC are unilateral and display a papillary type 2 or ductal histology.
View Article and Find Full Text PDFBackground: Amplification and overexpression of EIF3S3 gene has been demonstrated in breast and prostate cancer. Here, our goal was to study the effect of EIF3S3 on cell growth.
Methods: The effect of EIF3S3 on growth of NIH 3T3 murine fibroblasts as well as breast (SK-Br-3 and ZR-75-1) and prostate (PC-3 and LNCaP) cancer cell lines was examined by using transfection with inducible pTet-Off system and siRNAs.
Germline mutations in fumarate hydratase (FH) gene at 1q43 predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome. In HLRCC, the most common clinical features are leiomyomas of the skin and uterus, and in a subset of the families, renal cell cancer (RCC) and uterine leiomyosarcoma (ULMS) occur frequently at young age. This study was conducted to evaluate the possible contribution of FH mutations in a population-based series of early onset (< or = 45 years) ULMSs.
View Article and Find Full Text PDFDefects in mitochondrial enzymes predispose to severe developmental defects as well as tumorigenesis. Heterozygous germline mutations in the nuclear gene encoding fumarate hydratase (FH), an enzyme catalyzing the hydration of fumarate in the Krebs tricarboxylic acid cycle, cause hereditary leiomyomatosis and renal cell cancer; yet the connection between disruption of mitochondrial metabolic pathways and neoplasia remains to be discovered. We have used an expression microarray approach for studying differences in global gene expression pattern caused by mutations in FH.
View Article and Find Full Text PDF