Commissioning results of a liquid sample cell for X-ray reflectivity studies with an in situ applied electrical field are presented. The cell consists of a Plexiglas container with lateral Kapton windows for air-liquid and liquid-liquid interface studies, and was constructed with grooves to accept plate electrodes on the walls parallel to the direction of the beam. Both copper and ITO plate electrodes have been used, the latter being useful for simultaneous optical studies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2015
We describe an emulsion-based preparation of patchy composite particles (diameter of 100-500 μm) consisting of a disclike epoxy core and a belt of porous polystyrene particles (diameter of 30 μm) with magnetite within the pores. Compared to the magnetically uniform polystyrene particles, the spontaneous aggregation of composite particles is suppressed when dispersed into liquid, which is attributed to the increased particle size, reduced magnetic susceptibility, and the shape of the magnetic domain distribution within the particles (spherical versus a belt). When the composite particles are coated by platinum-palladium layer we demonstrate they can be employed as switchable catalyst carriers, moving from one liquid phase to another when controlled by an external magnetic field.
View Article and Find Full Text PDFWe use a magnetic field to align nickel particles into stringlike assemblies in urethane oligomer mixtures and create a semitransparent UV-curable nickel particle/polymer composite with anisotropic electrical conductivity and piezoresistive properties. When the particles are uniformly distributed in the oligourethane matrix, the mixture is moderately conductive at higher particle fractions but becomes insulating once the fraction is below about 5 vol %. With the particle fraction below this threshold and using an external magnetic field, the particles are aligned into continuous pathways through the oligomer mixtures following the magnetic flux lines.
View Article and Find Full Text PDFThe dielectric response of pentagonal defects in multilayer graphene nano-cones has been studied by electron energy loss spectroscopy and ab initio simulations. At the cone apex, a strong modification of the dielectric response is observed below the energy of the π plasmon resonance. This is attributed to π → π* interband transitions induced by topology-specific resonant π bonding states as well as π*-σ* hybridization.
View Article and Find Full Text PDFThe combination of nanoparticles and polymers into nanocomposite gels has been shown to be a promising route to creating soft materials with new or improved properties. In the present work, we have made use of Laponite nanoparticles in combination with a poly(N-isopropylacrylamide) (PNIPAAM) polymer and describe a phenomenon taking place during the polymerization and gelling of this system. The presence of small amounts of oxygen in the process induces two distinctly separated phases, one polymer-rich and one polymer-deficient water-clay phase.
View Article and Find Full Text PDFWe show how an alternating electric field can be used to assemble carbon nanocones (CNCs) and align these assemblies into microscopic wires in a commercial two-component adhesive. The wires form continuous pathways that may electrically connect the alignment electrodes, which leads to directional conductivity (∼10(-3) S/m) on a macroscopic scale. This procedure leads to conductivity enhancement of at least 2-3 orders of magnitude in the case where the CNC fraction (∼0.
View Article and Find Full Text PDFLarge-scale production of conical carbon nanostructures is possible through pyrolysis of hydrocarbons in a plasma torch process. The resulting carbon cones occur in five distinctly different forms, and disc-shaped particles are produced as well. The structure and properties of these carbon cones and discs have been relatively little explored until now.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2008
We experimentally investigated field-induced aggregation of nonmagnetic particles confined in a magnetic fluid layer when rotating magnetic fields were applied. After application of a magnetic field rotating in the plane of the fluid layer, the single particles start to form two-dimensional clusters, like dimers, trimers, and more complex structures. These clusters aggregated again and again to form bigger clusters.
View Article and Find Full Text PDFSelf-assembly has for the large part focused on the assembly of molecules without guidance or management from an outside source. However, self-assembly is in principle by no means limited to molecules or the nanoscale. A particularly interesting method to the self-assembly of micro- to millimetre sized components is the use of the 'magnetic hole' effect.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2006
Nonmagnetic particles in suspension in a ferrofluid act as magnetic holes when an external magnetic field is exerted: They acquire an effective dipolar moment opposing the surrounding one, which induces dipolar magnetic interactions. For a large enough imposed field and particle size, the induced interactions dominate the thermal forces, dipolar chains form. At equilibrium, these chains fluctuate under the effect of brownian noise.
View Article and Find Full Text PDFAqueous mixtures of the anionic sodium dodecyl sulfate (SDS) surfactant and thermo-responsive poly(N-vinylcaprolactam) chains grafted with omega-methoxy poly(ethylene oxide) undecyl alpha-methacrylate (PVCL-g-C11EO42) have been characterized using turbidimetry and small-angle neutron scattering (SANS). Turbidity measurements show that the addition of SDS to a dilute aqueous copolymer solution (1.0 wt %) induces an increase of the cloud point (CP) value and a decrease of the turbidity at high temperatures.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2004
Nonmagnetic microspheres confined in a ferrofluid layer are denoted by magnetic holes. They form aggregates due to dipolar interactions when an external magnetic field is exerted. Their cluster-cluster aggregation was studied for various magnetic fields using optical microscopy, both for small spheres of diameters, d=1.
View Article and Find Full Text PDFNonmagnetic particles in a carrier ferrofluid acquire an effective dipolar moment when placed in an external magnetic field. This fact leads them to form chains that will roughen due to Brownian motion when the magnetic field is decreased. We study this process through experiments, theory and simulations, three methods that agree on the scaling behavior over 5 orders of magnitude.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2004
Nonmagnetic spheres confined in a ferrofluid layer (magnetic holes) present dipolar interactions when an external magnetic field is exerted. The interaction potential of a microsphere pair is derived analytically, with precise care for the boundary conditions along the glass plates confining the system. Considering external fields consisting of a constant normal component and a high frequency rotating in-plane component, this interaction potential is averaged over time to exhibit the average interparticular forces acting when the imposed frequency exceeds the inverse of the viscous relaxation time of the system.
View Article and Find Full Text PDFPhys Rev B Condens Matter
April 1995
Phys Rev B Condens Matter
August 1994
Phys Rev B Condens Matter
September 1993