Publications by authors named "Helge Johannssen"

Diminished synaptic inhibition in the superficial spinal dorsal horn contributes to exaggerated pain responses that accompany peripheral inflammation and neuropathy. α2GABA receptors (α2GABAR) constitute the most abundant GABAR subtype at this site and are the targets of recently identified antihyperalgesic compounds. Surprisingly, hoxb8-α2 mice that lack α2GABAR from the spinal cord and peripheral sensory neurons exhibit unaltered sensitivity to acute painful stimuli and develop normal inflammatory and neuropathic hyperalgesia.

View Article and Find Full Text PDF

Optogenetics provide a potential alternative approach to the treatment of chronic pain, in which complex pathology often hampers efficacy of standard pharmacological approaches. Technological advancements in the development of thin, wireless, and mechanically flexible optoelectronic implants offer new routes to control the activity of subsets of neurons and nerve fibers . This study reports a novel and advanced design of battery-free, flexible, and lightweight devices equipped with one or two miniaturized LEDs, which can be individually controlled in real time.

View Article and Find Full Text PDF

Spinal transmission of pruritoceptive (itch) signals requires transneuronal signaling by gastrin-releasing peptide (GRP) produced by a subpopulation of dorsal horn excitatory interneurons. These neurons also express the glutamatergic marker vGluT2, raising the question of why glutamate alone is insufficient for spinal itch relay. Using optogenetics together with slice electrophysiology and mouse behavior, we demonstrate that baseline synaptic coupling between GRP and GRP receptor (GRPR) neurons is too weak for suprathreshold excitation.

View Article and Find Full Text PDF

Gastrin-releasing peptide (GRP) is a spinal itch transmitter expressed by a small population of dorsal horn interneurons (GRP neurons). The contribution of these neurons to spinal itch relay is still only incompletely understood, and their potential contribution to pain-related behaviors remains controversial. Here, we have addressed this question in a series of experiments performed in and transgenic male mice.

View Article and Find Full Text PDF

Avoidance of environmental dangers depends on nociceptive topognosis, or the ability to localize painful stimuli. This is proposed to rely on somatotopic maps arising from topographically organized point-to-point connections between the body surface and the CNS. To determine the role of topographic organization of spinal ascending projections in nociceptive topognosis, we generated a conditional knockout mouse lacking expression of the netrin1 receptor DCC in the spinal cord.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV) vector-mediated gene transfer into genetically defined neuron subtypes has become a powerful tool to study the neuroanatomy of neuronal circuits in the brain and to unravel their functions. More recently, this methodology has also become popular for the analysis of spinal cord circuits. To date, a variety of naturally occurring AAV serotypes and genetically modified capsid variants are available but transduction efficiency in spinal neurons, target selectivity, and the ability for retrograde tracing are only incompletely characterized.

View Article and Find Full Text PDF

Inactivation of transcription factor Foxa1 in mice results in neonatal mortality of unknown cause. Here, we report that ablation of Foxa1 causes impaired development and loss of the subthalamic nucleus (STN). Functional deficits in the STN have been implicated in the etiology of Huntington's and Parkinson's disease.

View Article and Find Full Text PDF

We present a cost-effective in vivo two-photon microscope with a highly flexible frontend for in vivo research. Our design ensures fast and reproducible access to the area of interest, including rotation of imaging plane, and maximizes space for auxiliary experimental equipment in the vicinity of the animal. Mechanical flexibility is achieved with large motorized linear stages that move the objective in the X, Y, and Z directions up to 130 mm.

View Article and Find Full Text PDF

Although the importance of reactive astrocytes during CNS pathology is well established, the function of astroglia in adult CNS homeostasis is less well understood. With the use of conditional, astrocyte-restricted protein synthesis termination, we found that selective paralysis of GFAP(+) astrocytes in vivo led to rapid neuronal cell loss and severe motor deficits. This occurred while structural astroglial support still persisted and in the absence of any major microvascular damage.

View Article and Find Full Text PDF

The gate control theory of pain proposes that inhibitory neurons of the spinal dorsal horn exert critical control over the relay of nociceptive signals to higher brain areas. Here we investigated how the glycinergic subpopulation of these neurons contributes to modality-specific pain and itch processing. We generated a GlyT2::Cre transgenic mouse line suitable for virus-mediated retrograde tracing studies and for spatially precise ablation, silencing, and activation of glycinergic neurons.

View Article and Find Full Text PDF

Two-photon microscopy enables high-resolution in vivo imaging of cellular morphology and activity, in particular of population activity in complex neuronal circuits. While two-photon imaging has been extensively used in a variety of brain regions in different species, in vivo application to the vertebrate spinal cord has lagged behind and only recently became feasible by adapting and refining the experimental preparations. A major experimental challenge for spinal cord imaging is adequate control of tissue movement, which meanwhile can be achieved by various means.

View Article and Find Full Text PDF

Two-photon Ca(2+) imaging allows functional studies of neuronal populations in the intact brain, but its application to the spinal cord in vivo has been limited. Here we present experimental procedures to label superficial dorsal horn populations with Ca(2+) indicator and to stabilize the spinal cord sufficiently to permit functional imaging in anaesthetized mice. Spontaneous Ca(2+) transients occurred in a small subpopulation of dorsal horn cells.

View Article and Find Full Text PDF

Glutathione is the major cellular thiol present in mammalian cells and is critical for maintenance of redox homeostasis. However, current assay systems for glutathione lack application to intact animal tissues. To map the levels of glutathione in intact brain with cellular resolution (acute tissue slices and live animals), we have used two-photon imaging of monochlorobimane fluorescence, a selective enzyme-mediated marker for reduced glutathione.

View Article and Find Full Text PDF