Publications by authors named "Helge J Ritter"

We propose that a principled understanding of meta-learning, as aimed for by the authors, benefits from linking the focus on learning with an equally strong focus on structure, which means to address the question: What are the meta-structures that can guide meta-learning?

View Article and Find Full Text PDF

Decentralization is a central characteristic of biological motor control that allows for fast responses relying on local sensory information. In contrast, the current trend of Deep Reinforcement Learning (DRL) based approaches to motor control follows a centralized paradigm using a single, holistic controller that has to untangle the whole input information space. This motivates to ask whether decentralization as seen in biological control architectures might also be beneficial for embodied sensori-motor control systems when using DRL.

View Article and Find Full Text PDF

In this article we present a network composed of coupled Kuramoto oscillators, which is able to solve a broad spectrum of perceptual grouping tasks. Based on attracting and repelling interactions between these oscillators, the network dynamics forms various phase-synchronized clusters of oscillators corresponding to individual groups of similar input features. The degree of similarity between features is determined by a set of underlying receptive fields, which are learned directly from the feature domain.

View Article and Find Full Text PDF

The P300 component of an event related potential is widely used in conjunction with brain-computer interfaces (BCIs) to translate the subjects intent by mere thoughts into commands to control artificial devices. A well known application is the spelling of words while selection of the letters is carried out by focusing attention to the target letter. In this paper, we present a P300-based online BCI which reaches very competitive performance in terms of information transfer rates.

View Article and Find Full Text PDF

We introduce a new type of neural network--the dynamic wave expansion neural network (DWENN)--for path generation in a dynamic environment for both mobile robots and robotic manipulators. Our model is parameter-free, computationally efficient, and its complexity does not explicitly depend on the dimensionality of the configuration space. We give a review of existing neural networks for trajectory generation in a time-varying domain, which are compared to the presented model.

View Article and Find Full Text PDF