Background: Image-driven dose escalation to tumor subvolumes has been proposed to improve treatment outcome in head and neck cancer (HNC). We used F-fluorodeoxyglucose (FDG) positron emission tomography (PET) acquired at baseline and into treatment (interim) to identify biologic target volumes (BTVs). We assessed the feasibility of interim dose escalation to the BTV with proton therapy by simulating the effects to organs at risk (OARs).
View Article and Find Full Text PDFWhile a constant relative biological effectiveness (RBE) of 1.1 forms the basis for clinical proton therapy, variable RBE models are increasingly being used in plan evaluation. However, there is substantial variation across RBE models, and several newdatasets have not yet been included in the existing models.
View Article and Find Full Text PDFIntroduction: Proton arc therapy (PAT) is an emerging treatment modality that holds promise to improve target volume coverage and reduce linear energy transfer (LET) in organs at risk. We aimed to investigate if pruning the highest energy layers in each beam direction could increase the LET in the target and reduce LET in tissue and organs at risk (OAR) surrounding the target volume, thus reducing the relative biological effectiveness (RBE)-weighted dose and sparing healthy tissue.
Methods: PAT plans for a germinoma, an ependymoma and a rhabdomyosarcoma patient were created in the Eclipse treatment planning system with a prescribed dose of 54 Gy(RBE) using a constant RBE of 1.
J Appl Clin Med Phys
September 2023
Introduction: Tumor hypoxia is associated with poor treatment outcome. Hypoxic regions are more radioresistant than well-oxygenated regions, as quantified by the oxygen enhancement ratio (OER). In optimization of proton therapy, including OER in addition to the relative biological effectiveness (RBE) could therefore be used to adapt to patient-specific radioresistance governed by intrinsic radiosensitivity and hypoxia.
View Article and Find Full Text PDFIn proton therapy, a constant relative biological effectiveness (RBE) factor of 1.1 is applied although the RBE has been shown to depend on factors including the Linear Energy Transfer (LET). The biological effectiveness of radiotherapy has also been shown to depend on the level of oxygenation, quantified by the oxygen enhancement ratio (OER).
View Article and Find Full Text PDFPurpose: Variable relative biological effectiveness (RBE) models allow for differences in linear energy transfer (LET), physical dose, and tissue type to be accounted for when quantifying and optimizing the biological damage of protons. These models are complex and fraught with uncertainties, and therefore, simpler RBE optimization strategies have also been suggested. Our aim was to compare several biological optimization strategies for proton therapy by evaluating their performance in different clinical cases.
View Article and Find Full Text PDFIntroduction: The increased radioresistance of hypoxic cells compared to well-oxygenated cells is quantified by the oxygen enhancement ratio (OER). In this study we created a FLUKA Monte Carlo based tool for inclusion of both OER and relative biological effectiveness (RBE) in biologically weighted dose (ROWD) calculations in proton therapy and applied this to explore the impact of hypoxia.
Methods: The RBE-weighted dose was adapted for hypoxia by making RBE model parameters dependent on the OER, in addition to the linear energy transfer (LET).