Publications by authors named "Helge E S Pettersen"

Background And Purpose: Image-guided proton beam therapy (IG-PBT) and cone-beam CT (CBCT)-based online adaptive photon radiotherapy (oART) have potentials to restrict radiation toxicity. They are both hypothesised to reduce therapy limiting bowel toxicity in the multimodality treatment of locally advanced rectal cancer (LARC). This study aimed to quantify the difference in relevant dose-volume metrics for these modalities.

View Article and Find Full Text PDF

Gradient-based optimization using algorithmic derivatives can be a useful technique to improve engineering designs with respect to a computer-implemented objective function. Likewise, uncertainty quantification through computer simulations can be carried out by means of derivatives of the computer simulation. However, the effectiveness of these techniques depends on how 'well-linearizable' the software is.

View Article and Find Full Text PDF

Proton therapy is highly sensitive to range uncertainties due to the nature of the dose deposition of charged particles. To ensure treatment quality, range verification methods can be used to verify that the individual spots in a pencil beam scanning treatment fraction match the treatment plan. This study introduces a novel metric for proton therapy quality control based on uncertainties in range verification of individual spots.

View Article and Find Full Text PDF

Background: Knowledge-based planning (KBP) is a method for automated radiotherapy treatment planning where appropriate optimization objectives for new patients are predicted based on a library of training plans. KBP can save time and improve organ at-risk sparing and inter-patient consistency compared to manual planning, but its performance depends on the quality of the training plans. We used another system for automated planning, which generates multi-criteria optimized (MCO) plans based on a wish list, to create training plans for the KBP model, to allow seamless integration of knowledge from a new system into clinical routine.

View Article and Find Full Text PDF

Background And Purpose: Radiation-induced brainstem necrosis after proton therapy is a severe toxicity with potential association to uncertainties in the proton relative biological effectiveness (RBE). A constant RBE of 1.1 is assumed clinically, but the RBE is known to vary with linear energy transfer (LET).

View Article and Find Full Text PDF

Particle therapy (PT) used for cancer treatment can spare healthy tissue and reduce treatment toxicity. However, full exploitation of the dosimetric advantages of PT is not yet possible due to range uncertainties, warranting development of range-monitoring techniques. This study proposes a novel range-monitoring technique introducing the yet unexplored concept of simultaneous detection and imaging of fast neutrons and prompt-gamma rays produced in beam-tissue interactions.

View Article and Find Full Text PDF

Background: State-of-the-art radiotherapy of locally advanced non-small cell lung cancer (LA-NSCLC) is performed with intensity-modulation during free breathing (FB). Previous studies have found encouraging geometric reproducibility and patient compliance of deep inspiration breath hold (DIBH) radiotherapy for LA-NSCLC patients. However, dosimetric comparisons of DIBH with FB are sparse, and DIBH is not routinely used for this patient group.

View Article and Find Full Text PDF

In this study, the novel iCE radiotherapy treatment planning system (TPS) for automated multi-criterial planning with integrated beam angle optimization (BAO) was developed, and applied to optimize organ at risk (OAR) sparing and systematically investigate the impact of beam angles on radiotherapy dose in locally advanced non-small cell lung cancer (LA-NSCLC). iCE consists of an in-house, sophisticated multi-criterial optimizer with integrated BAO, coupled to a broadly used commercial TPS. The in-house optimizer performs fluence map optimization to automatically generate an intensity-modulated radiotherapy (IMRT) plan with optimal beam angles for each patient.

View Article and Find Full Text PDF

Background: Temporal lobe necrosis (TLN) is a potential late effect after radiotherapy for skull base head and neck cancer (HNC). Several photon-derived dose constraints and normal tissue complication probability (NTCP) models have been proposed, however variation in relative biological effectiveness (RBE) may challenge the applicability of these dose constraints and models in proton therapy. The purpose of this study was therefore to investigate the influence of RBE variations on risk estimates of TLN after Intensity-Modulated Proton Therapy for HNC.

View Article and Find Full Text PDF

Background: Proton computed tomography (pCT) and radiography (pRad) are proposed modalities for improved treatment plan accuracy and treatment validation in proton therapy. The pCT system of the Bergen pCT collaboration is able to handle very high particle intensities by means of track reconstruction. However, incorrectly reconstructed and secondary tracks degrade the image quality.

View Article and Find Full Text PDF

Purpose: Intensity modulated proton therapy (IMPT) could yield high linear energy transfer (LET) in critical structures and increased biological effect. For head and neck cancers at the skull base this could potentially result in radiation-associated brain image change (RAIC). The purpose of the current study was to investigate voxel-wise dose and LET correlations with RAIC after IMPT.

View Article and Find Full Text PDF

Radiation therapy using protons and heavier ions is a fast-growing therapeutic option for cancer patients. A clinical system for particle imaging in particle therapy would enable online patient position verification, estimation of the dose deposition through range monitoring and a reduction of uncertainties in the calculation of the relative stopping power of the patient. Several prototype imaging modalities offer radiography and computed tomography using protons and heavy ions.

View Article and Find Full Text PDF

Background: Clinically, a constant value of 1.1 is used for the relative biological effectiveness (RBE) of protons, whereas the RBE has been shown to vary depending on physical dose, tissue type, and linear energy transfer (LET). As the LET increases at the distal end of the proton beam, concerns exist for an elevated RBE in normal tissues.

View Article and Find Full Text PDF

Background: Manual volumetric modulated arc therapy (VMAT) treatment planning for high-risk prostate cancer receiving whole pelvic radiotherapy (WPRT) with four integrated dose levels is complex and time consuming. We have investigated if the radiotherapy planning process and plan quality can be improved using a well-tuned model developed through a commercial system for knowledge-based planning (KBP).

Material And Methods: Treatment plans from 69 patients treated for high-risk prostate cancer with manually planned VMAT were used to develop an initial KBP model (RapidPlan, RP).

View Article and Find Full Text PDF

Iterative reconstruction (IR) is a computed tomgraphy (CT) reconstruction algorithm aiming at improving image quality by reducing noise in the image. During this process, IR also changes the noise properties in the images. To assess how IR algorithms from four vendors affect the noise properties in CT images, an anthropomorphic phantom was scanned and images reconstructed with filtered back projection (FBP), and a medium and high level of IR.

View Article and Find Full Text PDF
Article Synopsis
  • Children with brain tumors are often treated with proton therapy (PT) to minimize radiation damage to healthy tissues, compared to traditional photon-based therapy (VMAT).
  • A study analyzed 40 pediatric patients, comparing their PT plans to re-planned VMAT, focusing on dose to critical organs and assessing risks of complications using NTCP models.
  • Results showed that PT significantly reduced radiation exposure and complications like auditory toxicity, neurocognitive decline, and risks of secondary cancers, benefiting most patients compared to VMAT.
View Article and Find Full Text PDF

Background And Purpose: Until now, carbon ion RT (CIRT) dose constraints for the optic nerve (ON) have only been validated and reported in the NIRS RBE-weighted dose (D). The aim of this work is to improve CNAO's RBE-weighted dose (D) constraints by analyzing institutional toxicity data and by relating it to D.

Material And Methods: A total of 65 ONs from 38 patients treated with CIRT to the head and neck region in the period 2013-14 were analyzed.

View Article and Find Full Text PDF

Purpose: A pixel-based range telescope for tracking particles during proton imaging is described. The detector applies a 3D matrix of stacked Monolithic Active Pixel Sensors with fast readout speeds. This study evaluates different design alternatives of the range telescope on basis of the protons' range accuracy and the track reconstruction efficiency.

View Article and Find Full Text PDF

The prospecting activities for finding new rare earth elements (REE) sources have increased greatly in recent years. One of the main discoveries was announced in 2011 by Japanese researchers who found large quantities of REE on the ocean seafloor at the sea depths greater than 4,000 m. The classic approach to investigate REE in deep sea sediments is to obtain sediment samples by drilling that is followed by laborious laboratory analysis.

View Article and Find Full Text PDF