Publications by authors named "Helga U Kuechly"

Artificial light at night (ALAN) can have negative impacts on the health of humans and ecosystems. Marine organisms, including coral reefs in particular, rely on the natural light cycles of sunlight and moonlight to regulate various physiological, biological, and behavioral processes. Here, we demonstrate that light pollution caused delayed gametogenesis and unsynchronized gamete release in two coral species, Acropora millepora and Acropora digitifera, from the Indo-Pacific Ocean.

View Article and Find Full Text PDF

Temporal variation of natural light sources such as airglow limits the ability of night light sensors to detect changes in small sources of artificial light (such as villages). This study presents a method for correcting for this effect globally, using the satellite radiance detected from regions without artificial light emissions. We developed a routine to define an approximate grid of locations worldwide that do not have regular light emission.

View Article and Find Full Text PDF

Illumination of nocturnal environments is increasing steadily worldwide. While there are some benefits for mankind, light at night affects animals, plants, and human health by blurring the natural distinction between day and night. International regulations exist to protect the environment for the maintenance of human health but nocturnal darkness is not considered.

View Article and Find Full Text PDF

Despite constituting a widespread and significant environmental change, understanding of artificial nighttime skyglow is extremely limited. Until now, published monitoring studies have been local or regional in scope, and typically of short duration. In this first major international compilation of monitoring data we answer several key questions about skyglow properties.

View Article and Find Full Text PDF

The skyglow produced by artificial lights at night is one of the most dramatic anthropogenic modifications of Earth's biosphere. The GLOBE at Night citizen science project allows individual observers to quantify skyglow using star maps showing different levels of light pollution. We show that aggregated GLOBE at Night data depend strongly on artificial skyglow, and could be used to track lighting changes worldwide.

View Article and Find Full Text PDF