Artificial intelligence (AI) encompasses a broad spectrum of techniques that have been utilized by pharmaceutical companies for decades, including machine learning, deep learning, and other advanced computational methods. These innovations have unlocked unprecedented opportunities for the acceleration of drug discovery and delivery, the optimization of treatment regimens, and the improvement of patient outcomes. AI is swiftly transforming the pharmaceutical industry, revolutionizing everything from drug development and discovery to personalized medicine, including target identification and validation, selection of excipients, prediction of the synthetic route, supply chain optimization, monitoring during continuous manufacturing processes, or predictive maintenance, among others.
View Article and Find Full Text PDFMetabolic syndrome is a collection of abnormalities, including at least three of the following insulin resistance, hypertension, dyslipidemia, type 2 diabetes, obesity, inflammation, and non-alcoholic fatty liver disease. 3D printed solid dosage forms have emerged as a promising tool enabling the fabrication of personalized medicines and offering solutions that cannot be achieved by industrial mass production. Most attempts found in the literature to manufacture polypills for this syndrome contain just two drugs.
View Article and Find Full Text PDF3D printing technologies enable medicine customization adapted to patients' needs. There are several 3D printing techniques available, but majority of dosage forms and medical devices are printed using nozzle-based extrusion, laser-writing systems, and powder binder jetting. 3D printing has been demonstrated for a broad range of applications in development and targeting solid, semi-solid, and locally applied or implanted medicines.
View Article and Find Full Text PDFEven though more than two years have passed since the emergence of COVID-19, the research for novel or repositioned medicines from a natural source or chemically synthesized is still an unmet clinical need. In this review, the application of supercritical fluids to the development of novel or repurposed medicines for COVID-19 and their secondary bacterial complications will be discussed. We envision three main applications of the supercritical fluids in this field: (i) drug micronization, (ii) supercritical fluid extraction of bioactives and (iii) sterilization.
View Article and Find Full Text PDFAmphotericin B (AmB) has a broad antifungal and leishmanicidal activity with low incidence of clinical resistance. Its parenteral administration has high risk of nephrotoxicity that limits its use. In order to treat cutaneous infections, AmB topical administration is a safer therapy because of the low systemic absorption of the drug across mucous membranes.
View Article and Find Full Text PDF