Isocitrate lyase is a key enzyme of the glyoxylate cycle. This cycle plays an essential role in cell growth on acetate, and is important for gluconeogenesis as it bypasses the two oxidative steps of the tricarboxylic acid (TCA) cycle in which CO₂ is evolved. In this paper, a null icl mutant of the green microalga Chlamydomonas reinhardtii is described.
View Article and Find Full Text PDFType-II NAD(P)H dehydrogenases form a multigene family that comprise six members in the green microalga Chlamydomonas. To date, only one enzyme (Nda2) located in the chloroplast has been characterized in this alga and demonstrated to participate in the reduction of the plastoquinone pool. We present here the functional characterization of Nda1.
View Article and Find Full Text PDFThis paper describes the isolation and partial biomass characterization of high triacylglycerol (TAG) mutants of Chlorella sorokiniana and Scenedesmus obliquus, two algal species considered as potential source of biodiesel. Following UV mutagenesis, 2000 Chlorella and 2800 Scenedesmus colonies were screened with a method based on Nile Red fluorescence. Several mutants with high Nile Red fluorescence were selected by this high-throughput method in both species.
View Article and Find Full Text PDFNonsymbiotic hemoglobins are ubiquitously expressed in plants and divided into two different classes based on gene expression pattern and oxygen-binding properties. Most of the published research has been on the function of class 1 hemoglobins. To investigate the role of class 2 hemoglobins, transgenic Arabidopsis (Arabidopsis thaliana) plants were generated overexpressing Arabidopsis hemoglobin-2 (AHb2) under the control of a seed-specific promoter.
View Article and Find Full Text PDFSeed development passes through developmental phases such as cell division, differentiation and maturation: each have specific metabolic demands. The ubiquitous sucrose non-fermenting-like kinase (SnRK1) coordinates and adjusts physiological and metabolic demands with growth. In protoplast assays sucrose deprivation and hormone supplementation, such as with auxin and abscisic acid (ABA), stimulate SnRK1-promoter activity.
View Article and Find Full Text PDFSeveral legume seed proteins that are potentially allergenic, poorly digested by farm animals, and/or have undesirable functional properties, have been described. One of these is the albumin protein in pea (Pisum sativum) called PA2. A naturally occurring mutant line that lacks PA2 has been exploited in studies to determine the biological function of this nonstorage protein in seed development.
View Article and Find Full Text PDFPrevious attempts to manipulate oil synthesis in plants have mainly concentrated on the genes involved in the biosynthesis and use of fatty acids, neglecting the possible role of glycerol-3-phosphate supply on the rate of triacylglycerol synthesis. In this study, a yeast gene coding for cytosolic glycerol-3-phosphate dehydrogenase (gpd1) was expressed in transgenic oil-seed rape under the control of the seed-specific napin promoter. It was found that a twofold increase in glycerol-3-phosphate dehydrogenase activity led to a three- to fourfold increase in the level of glycerol-3-phosphate in developing seeds, resulting in a 40% increase in the final lipid content of the seed, with the protein content remaining substantially unchanged.
View Article and Find Full Text PDFSubstrate (futile) cycling involving carbohydrate turnover has been widely reported in plant tissues, although its extent, mechanisms, and functions are not well known. In this study, two complementary approaches, short and steady-state labeling experiments, were used to analyze glucose metabolism in maize (Zea mays) root tips. Unidirectional rates of synthesis for storage compounds (starch, Suc, and cell wall polysaccharides) were determined by short labeling experiments using [U-14C]glucose and compared with net synthesis fluxes to determine the rate of glucose production from these storage compounds.
View Article and Find Full Text PDFHemoglobins are ubiquitous in nature and among the best-characterized proteins. Genetics has revealed crucial roles for human hemoglobins, but similar data are lacking for plants. Plants contain symbiotic and nonsymbiotic hemoglobins; the former are thought to be important for symbiotic nitrogen fixation (SNF).
View Article and Find Full Text PDFIn oil-storing Brassica napus (rape) seeds, starch deposition occurs only transiently in the early stages of development, and starch is absent from mature seeds. This work investigates the influence of a reduction of ADP-Glc pyrophosphorylase (AGPase) on storage metabolism in these seeds. To manipulate the activity of AGPase in a seed-specific manner, a cDNA encoding the small subunit of AGPase was expressed in the sense or antisense orientation under the control of an embryo-specific thioesterase promoter.
View Article and Find Full Text PDFWe studied the influence of the internal oxygen concentration in seeds of wheat (Triticum aestivum) on storage metabolism and its relation to phloem import of nutrients. Wheat seeds that were developing at ambient oxygen (21%) were found to be hypoxic (2.1%).
View Article and Find Full Text PDFGlycerol-3-phosphate (glycerol-3P) is a primary substrate for triacylglycerol synthesis. In the present study, changes in the levels of glycerol-3P during rape (Brassica napus L.) seed development and the influence of manipulating glycerol-3P levels on triacylglycerol synthesis were investigated.
View Article and Find Full Text PDFThe aim of this study was to investigate whether endogenous restrictions in oxygen supply are limiting for storage metabolism in developing oilseed rape (Brassica napus) seeds. Siliques were studied 30 d after flowering, when rapid lipid accumulation is occurring in the seeds. (a).
View Article and Find Full Text PDFMetabolite assays are required to characterise how metabolism changes between genotypes during development and in response to environmental perturbations. They provide a springboard to identify important regulatory sites and investigate the underlying mechanisms. Due to their small size, Arabidopsis seeds pose a technical challenge for such measurements.
View Article and Find Full Text PDF