Publications by authors named "Helene Vacher"

Early exposure of does to sexually active bucks triggers early puberty onset correlating with neuroendocrine changes. However, the sensory pathways that are stimulated by the male are still unknown. Here, we assessed whether responses to olfactory stimuli are modulated by social experience (exposure to males or not) and/or endocrine status (prepubescent or pubescent).

View Article and Find Full Text PDF

Background: Rodents utilize chemical cues to recognize and avoid other conspecifics infected with pathogens. Infection with pathogens and acute inflammation alter the repertoire and signature of olfactory stimuli emitted by a sick individual. These cues are recognized by healthy conspecifics via the vomeronasal or accessory olfactory system, triggering an innate form of avoidance behavior.

View Article and Find Full Text PDF

In goats, early exposure of spring-born females to sexually active bucks induces an early puberty onset assessed by the first ovulation. This effect is found when females are continuously exposed well before the male breeding season starting in September. The first aim of this study was to evaluate whether a shortened exposure of females to males could also lead to early puberty.

View Article and Find Full Text PDF

The axon initial segment (AIS) plays a central role in electrogenesis and in the maintenance of neuronal polarity. Its molecular organization is dependent on the scaffolding protein ankyrin (Ank) G and is regulated by kinases. For example, the phosphorylation of voltage-gated sodium channels by the protein kinase CK2 regulates their interaction with AnkG and, consequently, their accumulation at the AIS.

View Article and Find Full Text PDF

Voltage-gated ion channels are diverse and fundamental determinants of neuronal intrinsic excitability. Voltage-gated K(+) (Kv) and Na(+) (Nav) channels play complex yet fundamentally important roles in determining intrinsic excitability. The Kv and Nav channels located at the axon initial segment (AIS) play a unique and especially important role in generating neuronal output in the form of anterograde axonal and backpropagating action potentials.

View Article and Find Full Text PDF

Postnatal formation of the neuromuscular synapse requires complex interactions among nerve terminal, muscle fibres and terminal Schwann cells. In motor endplate disease (med) mice, neuromuscular transmission is severely impaired without alteration of axonal conduction and a lethal paralytic phenotype occurs during the postnatal period. The med phenotype appears at a crucial stage of the neuromuscular junction development, corresponding to the increase in terminal Schwann cell number, the elimination of the multiple innervations and the pre- and postsynaptic maturation.

View Article and Find Full Text PDF

Voltage-gated ion channels are a diverse family of signaling proteins that mediate rapid electrical signaling events. Among these, voltage-gated potassium or Kv channels are the most diverse partly due to the large number of principal (or α) subunits and auxiliary subunits that can assemble in different combinations to generate Kv channel complexes with distinct structures and functions. The diversity of Kv channels underlies much of the variability in the active properties between different mammalian central neurons and the dynamic changes that lead to experience-dependent plasticity in intrinsic excitability.

View Article and Find Full Text PDF

The axon initial segment (AIS) plays a key role in maintaining the molecular and functional polarity of the neuron. The relationship between the AIS architecture and the microtubules (MTs) supporting axonal transport is unknown. Here we provide evidence that the MT plus-end-binding (EB) proteins EB1 and EB3 have a role in the AIS in addition to their MT plus-end tracking protein behavior in other neuronal compartments.

View Article and Find Full Text PDF

Kv1 channels are concentrated at specific sites in the axonal membrane, where they regulate neuronal excitability. Establishing these distributions requires regulated dissociation of Kv1 channels from the neuronal trafficking machinery and their subsequent insertion into the axonal membrane. We find that the auxiliary Kvβ2 subunit of Kv1 channels purified from brain is phosphorylated on serine residues 9 and 31, and that cyclin-dependent kinase (Cdk)-mediated phosphorylation at these sites negatively regulates the interaction of Kvβ2 with the microtubule plus end-tracking protein EB1.

View Article and Find Full Text PDF

In mammalian neurons, the generation and propagation of the action potential result from the presence of dense clusters of voltage-gated sodium channels (Nav) at the axonal initial segment (AIS) and nodes of Ranvier. In these two structures, the assembly of specific supra-molecular complexes composed of numerous partners, such as cytoskeletal scaffold proteins and signaling proteins ensures the high concentration of Nav channels. Understanding how neurons regulate the expression and discrete localization of Nav channels is critical to understanding the diversity of normal neuronal function as well as neuronal dysfunction caused by defects in these processes.

View Article and Find Full Text PDF

The French Ion Channel society has existed since 1989 and its main goal is to annually organize a scientific meeting. This meeting, which gathers young and senior French scientists, provides a great opportunity for exchange and interaction among the ion channel research community. Additionally, for many years, the French ion channel meeting has attracted a significant number of scientists from different European countries, promoting the discussion of new insights and advances, as well as aiding in the establishment of collaborations.

View Article and Find Full Text PDF

The intrinsic electrical properties and the synaptic input-output relationships of neurons are governed by the action of voltage-dependent ion channels. The localization of specific populations of ion channels with distinct functional properties at discrete sites in neurons dramatically impacts excitability and synaptic transmission. Molecular cloning studies have revealed a large family of genes encoding voltage-dependent ion channel principal and auxiliary subunits, most of which are expressed in mammalian central neurons.

View Article and Find Full Text PDF

Kv1.2 alpha-subunits are components of low-threshold, rapidly activating voltage-gated potassium (Kv) channels in mammalian neurons. Expression and localization of Kv channels is regulated by trafficking signals encoded in their primary structure.

View Article and Find Full Text PDF

Purpose: Mice lacking the Kv1.1 potassium channel alpha subunit encoded by the Kcna1 gene develop recurrent behavioral seizures early in life. We examined the neuropathological consequences of seizure activity in the Kv1.

View Article and Find Full Text PDF

Among ion channels, voltage-gated calcium channels have been considered unique in their ability to mediate signaling events independent of the flow of ions through their pore. A voltage-gated potassium channel termed Kv2.1 has been identified as playing a role remarkably similar to one ion-independent function of calcium channels, facilitating regulated exocytosis through a direct interaction with a t-SNARE [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor] component of the vesicle release machinery.

View Article and Find Full Text PDF

Modulation of voltage-gated potassium (Kv) channel surface expression can profoundly affect neuronal excitability. Some, but not all, mammalian Shaker or Kv1 alpha subunits contain a dominant endoplasmic reticulum (ER) retention signal in their pore region, preventing surface expression of Kv1.1 homotetrameric channels and of heteromeric Kv1 channels containing more than one Kv1.

View Article and Find Full Text PDF

In the October 6th issue of Science, Raab-Graham et al. described two surprising findings. They discovered that local dendritic translation of Kv1.

View Article and Find Full Text PDF

The binding site distribution of sBmTX3, a chemically synthesized toxin originally purified from the venom of the scorpion Buthus martensi, was investigated in adult and developing rat brain, using patch-clamp experiments and quantitative autoradiography. The molecular basis of these sBmTX3 sites was analysed by electrophysiology on transient Kv currents recorded in mammalian transfected cells. The rapidly activating and inactivating Kv4.

View Article and Find Full Text PDF

The AaH II toxin from the scorpion Androctonus australis Hector is considered to be the standard alpha-toxin because it selectively binds with the highest known affinity to site 3 of mammalian voltage-activated Na+ channels (Na(v)) on rat brain synaptosomes but does not bind to insect synaptosomes. We generated two different constructs in pMALp allowing us to produce AaH II fused with the maltose-binding protein (MBP) in E. coli.

View Article and Find Full Text PDF

Three novel scorpion toxins, Aa1 from Androctonus australis, BmTX3 from Buthus martensi and AmmTX3 from Androctonus mauretanicus were shown able to selectively block A-type K+ currents in cerebellum granular cells or cultured striatum neurons from rat brain. In electrophysiology experiments, the transient A-current completely disappeared when 1 microM of the toxins was applied to the external solution whereas the sustained K+ current was unaffected. The three toxins shared high sequence homologies (more than 94%) and constituted a new 'short-chain' scorpion toxin subfamily: alpha-KTx15.

View Article and Find Full Text PDF

BmTX3 is a toxin recently characterised from the venom of the Chinese scorpion Buthus martensi Karch, which specifically blocks a transient A-type K+ current in striatum neurons in culture and binds to rat brain synaptosomes with high affinity. With Aa1 and AmmTX3, it belongs to the new alpha-KTx15 subfamily from "short-chain" scorpion toxins, which specifically block different types of K+ channels. Here, a highly specific polyclonal antiserum was raised in rabbit against a C-terminal deleted BmTX3 analogue (BmTX-del YP).

View Article and Find Full Text PDF

A novel HERG channel blocker was isolated from the venom of the scorpion Buthus martensi Karsch, sequenced and characterized at the pharmacological level after chemical synthesis. According to the determined amino acid sequence, the cDNA and genomic genes were then cloned. The genomic gene consists of two exons interrupted by an intron of 65 bp at position -6 upstream from the mature toxin.

View Article and Find Full Text PDF

The venom of the scorpion Androctonus mauretanicus mauretanicus was screened by use of a specific serum directed against AaH II, the scorpion alpha-toxin of reference, with the aim of identifying new analogues. This led to the isolation of Amm VIII (7382.57 Da), which gave a highly positive response in ELISA, but was totally devoid of toxicity when injected subcutaneously into mice.

View Article and Find Full Text PDF

We deleted the two C-terminal residues of the scorpion toxin BmTx3, a peptidyl inhibitor of a transient A-type K(+) current in striatum neurons in culture, to assess their contribution to receptor recognition. The sBmTX3-delYP analog was shown to have a native-like structure in one-dimensional 1H-nuclear magnetic resonance (NMR) spectroscopy. We found that sBmTX3-delYP bound to its receptor less efficiently than the wild-type molecule (by a factor of about 10(5)) in binding assays with rat brain membranes, and that this molecule did not block the A-type K(+) current (at a concentration of 35 microM) in whole-cell patch clamp experiments with striatum neurons.

View Article and Find Full Text PDF

A novel toxin, AmmTX3 (3823.5 Da), was isolated from the venom of the scorpion Androctonus mauretanicus. It showed 94% sequence homology with Aa1 from Androctonus australis and 91% with BmTX3 from Buthus martensi which, respectively, block A-type K+ current in cerebellum granular cells and striatum cultured neurons.

View Article and Find Full Text PDF