Halogenated bisphenol A (BPA) derivatives are produced during disinfection treatment of drinking water or are synthesized as flame retardants (TCBPA or TBBPA). BPA is considered as an endocrine disruptor especially on human follicle-stimulating hormone receptor (FSHR). Using a global experimental approach, we assessed the effect of halogenated BPA derivatives on FSHR activity and estimated the risk of halogenated BPA derivatives to the reproductive health of exposed populations.
View Article and Find Full Text PDFTetrodotoxin (TTX) poisoning through the consumption of contaminated fish leads to lethal symptoms, including severe hypotension. This TTX-induced hypotension is likely due to the downfall of peripheral arterial resistance through direct or indirect effects on adrenergic signaling. TTX is a high-affinity blocker of voltage-gated Na (Na) channels.
View Article and Find Full Text PDFUnderstanding temperature production and regulation in endotherm organisms becomes a crucial challenge facing the increased frequency and intensity of heat strokes related to global warming. Mitochondria, located at the crossroad of metabolism, respiration, Ca homeostasis, and apoptosis, were recently proposed to further act as cellular radiators, with an estimated inner temperature reaching 50 °C in common cell lines. This inner thermogenesis might be further exacerbated in organs devoted to produce consistent efforts as muscles, or heat as brown adipose tissue, in response to acute solicitations.
View Article and Find Full Text PDFThanks to the crosstalk between Na and Ca channels, Na and Ca homeostasis interplay in so-called excitable cells enables the generation of action potential in response to electrical stimulation. Here, we investigated the impact of persistent activation of voltage-gated Na (Na) channels by neurotoxins, such as veratridine (VTD), on intracellular Ca concentration ([Ca]) in a model of excitable cells, the rat pituitary GH3b6 cells, in order to identify the molecular actors involved in Na-Ca homeostasis crosstalk. By combining RT-qPCR, immunoblotting, immunocytochemistry, and patch-clamp techniques, we showed that GH3b6 cells predominantly express the Na1.
View Article and Find Full Text PDFFipronil (FPN) is a worldwide-used neurotoxic insecticide, targeting, and blocking GABA receptors (GABARs). Beyond its efficiency on insect GABARs, FPN causes neurotoxic effects in humans and mammals. Here, we investigated the mode of action of FPN on mammalian α6-containing GABARs to understand its inhibitory effects on GABA-induced currents, as a function of the synaptic or extrasynaptic localization of GABARs.
View Article and Find Full Text PDFNeonicotinoid insecticides are nicotine-derived molecules which exert acute neurotoxic effects over the insect central nervous system by activating nicotinic acetylcholine receptors (nAChRs). However, these receptors are also present in the mammalian central and peripheral nervous system, where the effects of neonicotinoids are faintly known. In mammals, cholinergic synapses are crucial for the control of vascular tone, blood pressure and skeletal muscle contraction.
View Article and Find Full Text PDFAnatoxin-a (ATX-a) is a neurotoxic alkaloid, produced by several freshwater planktonic and benthic cyanobacteria (CB). Such CB have posed human and animal health issues for several years, as this toxin is able to cause neurologic symptoms in humans following food poisoning and death in wild and domestic animals. Different episodes of animal intoxication have incriminated ATX-a worldwide, as confirmed by the presence of ATX-a-producing CB in the consumed water or biofilm, or the observation of neurotoxic symptoms, which match experimental toxicity in vivo.
View Article and Find Full Text PDFNeonicotinoid insecticides are widely used to protect plants against pest insects, and insecticide residues remaining in the environment affect both target and non-target organisms. Whereas low doses of neonicotinoids have been shown to disturb the behaviour of pollinating insects, recent studies have revealed that a low dose of the neonicotinoid clothianidin can improve behavioural and neuronal sex pheromone responses in a pest insect, the male moth Agrotis ipsilon, and thus potentially improve reproduction. As male moth behaviour depends also on its physiological state and previous experience with sensory signals, we wondered if insecticide effects would be dependent on plasticity of olfactory-guided behaviour.
View Article and Find Full Text PDFInsect pest management relies mainly on neurotoxic insecticides, including neonicotinoids, leaving residues in the environment. There is now evidence that low doses of insecticides can have positive effects on pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction, and olfactory synaptic transmission is cholinergic, neonicotinoid residues could modify chemical communication.
View Article and Find Full Text PDFInsect nicotinic acetylcholine receptors (nAChRs) represent a major target of insecticides, belonging to the neonicotinoid family. However, the pharmacological profile of native nAChRs is poorly documented, mainly because of a lack of knowledge of their subunit stoichiometry, their tissue distribution and the weak access to nAChR-expressing cells. In addition, the expression of insect nAChRs in heterologous systems remains hard to achieve.
View Article and Find Full Text PDFIn moths, which include many agricultural pest species, males are attracted by female-emitted sex pheromones. Although integrated pest management strategies are increasingly developed, most insect pest treatments rely on widespread use of neurotoxic chemicals, including neonicotinoid insecticides. Residual accumulation of low concentrations of these insecticides in the environment is known to be harmful to beneficial insects such as honey bees.
View Article and Find Full Text PDFNeonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI), thiamethoxam (TMX) and clothianidin (CLT).
View Article and Find Full Text PDFCalcium/calmodulin-dependent protein kinase II (CaMKII) is a key kinase that transduces Ca²⁺ signals into downstream effects acting on a range of cellular processes in nervous system and muscular tissues. In insects, different CaMKII isoforms have been reported in Drosophila melanogaster, Apis florae, Bombus terrestris, and Bombus impatiens but little is known on the organization and tissue-specific expression of these isoforms with the exception of Drosophila. The present study reports the cloning of five CaMKII splice variants issued from a single gene and their tissue-specific expression in the cockroach Periplaneta americana.
View Article and Find Full Text PDFAcetylcholine (ACh) is probably the oldest signalling neurotransmitter which appeared in evolution before the nervous system. It is present in bacteria, algae, protozoa and plants. In insects and mammals it is involved in cell-to-cell communications in various neuronal and non-neuronal tissues.
View Article and Find Full Text PDFMost animals, including pest insects, live in an "odor world" and depend strongly on chemical stimuli to get information on their biotic and abiotic environment. Although integrated pest management strategies including the use of insect growth regulators (IGRs) are increasingly developed, most insect pest treatments rely on neurotoxic chemicals. These molecules are known to disrupt synaptic transmission, affecting therefore sensory systems.
View Article and Find Full Text PDFInsect nicotinic acetylcholine receptors have been objects of attention since the discovery of neonicotinoid insecticides. Mutagenesis studies have revealed that, although the detailed subunit composition of insect nicotinic acetylcholine receptors subtypes eludes us, the framework provided by mutagenesis analysis makes a picture of the subunits involved in the ligand binding and channel properties. In fact, many residues that line the channel or bind to the ligand seemed to be strongly conserved in particular in the N-terminal extracellular region and the second transmembrane domain which constitutes the ion-conducting pathway supporting the flux of ions as well as their discrimination.
View Article and Find Full Text PDFAdv Exp Med Biol
September 2010
A major criteria initially used to localize cholinergic neuronal elements in nervous systems tissues that involve acetylcholine (ACh) as neurotransmitter is mainly based on immunochemical studies using choline acetyltransferase (ChAT), an enzyme which catalyzes ACh biosynthesis and the ACh degradative enzyme named acetylcholinesterase (AChE). Immunochemical studies using anti-ChAT monoclonal antibody have allowed the identification of neuronal processes and few types of cell somata that contain ChAT protein. In situ hybridization using cRNA probes to ChAT or AChE messenger RNA have brought new approaches to further identify cell bodies transcribing the ChAT or AChE genes.
View Article and Find Full Text PDFSystemically injected neural precursor cells (NPCs) were unexpectedly shown to reach the cerebral parenchyma and induce recovery in various diffuse brain pathologies, including animal models of multiple sclerosis. However, the molecular mechanisms supporting NPC migration across brain endothelium remain elusive. Brain endothelium constitutes the blood-brain barrier, which uniquely controls the access of drugs and trafficking of cells, including leukocytes, from the blood to the brain.
View Article and Find Full Text PDF