Surface water pollution with poly- and perfluorinated compounds (PFAS) is a well-recognized problem, but knowledge about contribution of different emission pathways, especially diffuse ones, is very limited. This study investigates the potential of the pathway oriented MoRE model in shedding light on the relevance of different emission pathways on regional scale and in predicting concentrations and loads in unmonitored rivers. Modelling was supported with a tailor-made monitoring programme aimed to fill gaps on PFAS concentration in different environmental compartments.
View Article and Find Full Text PDFOccurrence and concentration of a broad spectrum of micropollutants are investigated in Austrian river catchments, namely polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), organotin compounds, perfluoroalkyl acids (PFAAs) and metals. The parallel analysis across multiple environmental and engineered compartments sheds light on the ratio of dissolved and particulate transport and on differences in concentration levels between point and diffuse emission pathways. It is found that some PAHs and organotins are present in rivers, groundwater and bulk deposition at higher concentrations than in municipal wastewater effluents.
View Article and Find Full Text PDFChanges in climatic conditions will directly affect the quality and quantity of water resources. Further on, they will affect them indirectly through adaptation in land use which ultimately influences diffuse nutrient emissions to rivers and therefore potentially the compliance with good ecological status according to the EU Water Framework Directive (WFD). We present an integrated impact modelling framework (IIMF) to track and quantify direct and indirect pollution impacts along policy-economy-climate-agriculture-water interfaces.
View Article and Find Full Text PDF