Publications by authors named "Helene Rimbert"

Aegilops umbellulata serve as an important reservoir for novel biotic and abiotic stress tolerance for wheat improvement. However, chromosomal rearrangements and evolutionary trajectory of this species remain to be elucidated. Here, we present a comprehensive investigation into Ae.

View Article and Find Full Text PDF

Bread wheat (Triticum aestivum L.) is a major crop and its genome is one of the largest ever assembled at reference-quality level. It is 15 Gb, hexaploid, with 85% of transposable elements (TEs).

View Article and Find Full Text PDF

Most bread wheat is consumed after processing, which mainly depends on the quantity and quality of protein in the grain. Storage protein content and composition particularly influence the end use quality of milled grain products. Storage proteins are components of the gluten network that confer dough viscoelasticity, an essential property for processing.

View Article and Find Full Text PDF

Understanding meiotic crossover (CO) variation in crops like bread wheat ( L.) is necessary as COs are essential to create new, original and powerful combinations of genes for traits of agronomical interest. We cytogenetically characterized a set of wheat aneuploid lines missing part or all of chromosome 3B to identify the most influential regions for chiasma formation located on this chromosome.

View Article and Find Full Text PDF

Background: The sequencing of the wheat (Triticum aestivum) genome has been a methodological challenge for many years owing to its large size (15.5 Gb), repeat content, and hexaploidy. Many initiatives aiming at obtaining a reference genome of cultivar Chinese Spring have been launched in the past years and it was achieved in 2018 as the result of a huge effort to combine short-read sequencing with many other resources.

View Article and Find Full Text PDF

, the primary cause of Fusarium head blight (FHB) in small-grain cereals, demonstrates remarkably variable levels of aggressiveness in its host, producing different infection dynamics and contrasted symptom severity. While the secreted proteins, including effectors, are thought to be one of the essential components of aggressiveness, our knowledge of the intra-species genomic diversity of is still limited. In this work, we sequenced eight European strains of contrasting aggressiveness to characterize their respective genome structure, their gene content and to delineate their specificities.

View Article and Find Full Text PDF

Until recently, achieving a reference-quality genome sequence for bread wheat was long thought beyond the limits of genome sequencing and assembly technology, primarily due to the large genome size and > 80% repetitive sequence content. The release of the chromosome scale 14.5-Gb IWGSC RefSeq v1.

View Article and Find Full Text PDF

Structural variations (SVs) such as copy number and presence-absence variations are polymorphisms that are known to impact genome composition at the species level and are associated with phenotypic variations. In the absence of a reference genome sequence, their study has long been hampered in wheat. The recent production of new wheat genomic resources has led to a paradigm shift, making possible to investigate the extent of SVs among cultivated and wild accessions.

View Article and Find Full Text PDF

Meiotic recombination is initiated by formation of DNA double-strand breaks (DSBs). This involves a protein complex that includes in plants the two similar proteins, SPO11-1 and SPO11-2. We analysed the sequences of SPO11-2 in hexaploid bread wheat (Triticum aestivum), as well as in its diploid and tetraploid progenitors.

View Article and Find Full Text PDF

Background: Insertions/deletions (InDels) and more specifically presence/absence variations (PAVs) are pervasive in several species and have strong functional and phenotypic effect by removing or drastically modifying genes. Genotyping of such variants on large panels remains poorly addressed, while necessary for approaches such as association mapping or genomic selection.

Results: We have developed, as a proof of concept, a new high-throughput and affordable approach to genotype InDels.

View Article and Find Full Text PDF

Since its domestication in the Fertile Crescent ~8000 to 10,000 years ago, wheat has undergone a complex history of spread, adaptation, and selection. To get better insights into the wheat phylogeography and genetic diversity, we describe allele distribution through time using a set of 4506 landraces and cultivars originating from 105 different countries genotyped with a high-density single-nucleotide polymorphism array. Although the genetic structure of landraces is collinear to ancient human migration roads, we observe a reshuffling through time, related to breeding programs, with the appearance of new alleles enriched with structural variations that may be the signature of introgressions from wild relatives after 1960.

View Article and Find Full Text PDF
Article Synopsis
  • Fusarium graminearum is a significant fungal pathogen responsible for Fusarium head blight (FHB), which affects small-grain cereals globally.
  • The announcement shares the complete genome sequence of a specific and highly virulent French isolate, named MDC_Fg1.
  • This research is important for understanding the pathogen's genetics and developing strategies to combat the disease it causes.
View Article and Find Full Text PDF

The Wheat@URGI portal has been developed to provide the international community of researchers and breeders with access to the bread wheat reference genome sequence produced by the International Wheat Genome Sequencing Consortium. Genome browsers, BLAST, and InterMine tools have been established for in-depth exploration of the genome sequence together with additional linked datasets including physical maps, sequence variations, gene expression, and genetic and phenomic data from other international collaborative projects already stored in the GnpIS information system. The portal provides enhanced search and browser features that will facilitate the deployment of the latest genomics resources in wheat improvement.

View Article and Find Full Text PDF
Article Synopsis
  • Single Nucleotide Polymorphisms (SNPs) are key for genetics studies due to their high abundance and suitability for large-scale analysis, but previous research on wheat primarily focused on gene-coding areas, neglecting the majority of the genome.
  • The study utilized whole-genome resequencing data from eight wheat lines to identify 3.3 million SNPs across various genomic regions, with significant distribution: 49% on the B-genome, 41% on the A-genome, and 10% on the D-genome.
  • The TaBW280K high-throughput genotyping array, developed from this research, contains 280,226 SNPs and effectively supports genetic diversity analysis and breeding, proven
View Article and Find Full Text PDF

During meiosis, crossovers (COs) create new allele associations by reciprocal exchange of DNA. In bread wheat ( L.), COs are mostly limited to subtelomeric regions of chromosomes, resulting in a substantial loss of breeding efficiency in the proximal regions, though these regions carry ∼60-70% of the genes.

View Article and Find Full Text PDF

Transposable elements (TEs) account for more than 80% of the wheat genome. Although they represent a major obstacle for genomic studies, TEs are also a source of polymorphism and consequently of molecular markers such as insertion site-based polymorphism (ISBP) markers. Insertion site-based polymorphisms have been found to be a great source of genome-specific single-nucleotide polymorphism (SNPs) in the hexaploid wheat ( L.

View Article and Find Full Text PDF