Publications by authors named "Helene N David"

Xenon (Xe) is considered to be the golden standard neuroprotective gas. However, Xe has a higher molecular weight and lower thermal conductivity and specific heat than those of nitrogen, the main diluent of oxygen in air. These physical characteristics could impair or at least reduce the intrinsic neuroprotective action of Xe by increasing the patient's respiratory workload and body temperature.

View Article and Find Full Text PDF

The noble gases xenon (Xe) and helium (He) are known to possess neuroprotective properties. Xe is considered the golden standard neuroprotective gas. However, Xe has a higher molecular weight and lower thermal conductivity and specific heat than those of nitrogen, the main diluent of oxygen (O2) in air, conditions that could impair or at least reduce the intrinsic neuroprotective properties of Xe by increasing the critical care patient's respiratory workload and body temperature.

View Article and Find Full Text PDF

The occurrence of paroxysmal narcotic episodes including psychotic-like symptoms in divers participating to experimental deep diving programs with various gas mixtures has constituted, beyond the classical symptoms of the high-pressure neurological syndrome, the major limitation for deep diving. With the development of new saturation deep diving programs and experiments by the eastern nations, such as India and China, we believed that it is of interest to examine what could be the ultimate depth that could be reached by saturation human divers. Based on previous data and the critical volume model of inert gas narcosis, we propose that the ultimate depth for saturation diving could be around 1,000 m.

View Article and Find Full Text PDF

Interventions: Helium has been shown to provide neuroprotection in mechanical model of acute ischemic stroke by inducing hypothermia, a condition shown by itself to reduce the thrombolytic and proteolytic properties of tissue plasminogen activator. However, whether or not helium interacts with the thrombolytic drug tissue plasminogen activator, the only approved therapy of acute ischemic stroke still remains unknown. This point is not trivial since previous data have shown the critical importance of the time at which the neuroprotective noble gases xenon and argon should be administered, during or after ischemia, in order not to block tissue plasminogen activator-induced thrombolysis and to obtain neuroprotection and inhibition of tissue plasminogen activator-induced brain hemorrhages.

View Article and Find Full Text PDF

Despite state-of-the-art hyperbaric oxygen (HBO) treatment, about 30% of patients suffering neurologic decompression sickness (DCS) exhibit incomplete recovery. Since the mechanisms of neurologic DCS involve ischemic processes which result in excitotoxicity, it is likely that HBO in combination with an anti-excitotoxic treatment would improve the outcome in patients being treated for DCS. Therefore, in the present study, we investigated the effect of the noble gas xenon in an ex vivo model of neurologic DCS.

View Article and Find Full Text PDF

Systemic administration of γ-amino-butyric acid type A (GABA-A) and benzodiazepine receptor agonists has been reported to block the development of locomotor sensitization to amphetamine. Here, we investigated whether the non-anesthetic noble gas argon, shown to possess agonistic properties at these receptors, may block the acquisition of amphetamine-induced locomotor sensitization and mu opioid receptor activation in the nucleus accumbens. Rats were pretreated with saline solution or amphetamine (1 mg/kg) from day 1 to day 3 and then exposed, immediately after injection of amphetamine, to medicinal air or argon at 75 vol% (with the remainder being oxygen).

View Article and Find Full Text PDF

Background: The mechanisms by which general anesthetics, including xenon and nitrous oxide, act are only beginning to be discovered. However, structural approaches revealed weak but specific protein-gas interactions.

Methods: To improve knowledge, we performed x-ray crystallography studies under xenon and nitrous oxide pressure in a series of 10 binding sites within four proteins.

View Article and Find Full Text PDF

Background: Current in vivo methods cannot distinguish between the roles of vascular and stationary tissular gas bubbles in the mechanisms of decompression sickness (DCS).

New Method: To answer this question, we designed a normobaric-hyperbaric chamber for studying specifically the contribution of stationary tissular gas bubbles in the mechanisms of DCS in individually-superfused tissue samples. For validating our method, we investigated in rat brain slices exposed to 0.

View Article and Find Full Text PDF

Argon has been shown to provide cortical as well as, under certain conditions, subcortical neuroprotection in all models so far (middle cerebral artery occlusion, trauma, neonatal asphyxia, etc.). This has led to the suggestion that argon could be a cost-efficient alternative to xenon, a metabolically inert gas thought to be gold standard in gas pharmacology but whose clinical development suffers its little availability and excessive cost of production.

View Article and Find Full Text PDF

In vitro studies have well established the neuroprotective action of the noble gas argon. However, only limited data from in vivo models are available, and particularly whether postexcitotoxic or postischemic argon can provide neuroprotection in vivo still remains to be demonstrated. Here, we investigated the possible neuroprotective effect of postexcitotoxic-postischemic argon both ex vivo in acute brain slices subjected to ischemia in the form of oxygen and glucose deprivation (OGD), and in vivo in rats subjected to an intrastriatal injection of N-methyl-D-aspartate (NMDA) or to the occlusion of middle-cerebral artery (MCAO).

View Article and Find Full Text PDF

Background: Preclinical evidence in rodents has suggested that inert gases, such as xenon or nitrous oxide, may be promising neuroprotective agents for treating acute ischemic stroke. This has led to many thinking that clinical trials could be initiated in the near future. However, a recent study has shown that xenon interacts with tissue-type plasminogen activator (tPA), a well-recognized approved therapy of acute ischemic stroke.

View Article and Find Full Text PDF

The remarkably safe anesthetics xenon (Xe) and, to lesser extent, nitrous oxide (N(2)O) possess neuroprotective properties in preclinical studies. To investigate the mechanisms of pharmacological action of these gases, which are still poorly known, we performed both crystallography under a large range of gas pressure and biochemical studies on urate oxidase, a prototype of globular gas-binding proteins whose activity is modulated by inert gases. We show that Xe and N(2)O bind to, compete for, and expand the volume of a hydrophobic cavity located just behind the active site of urate oxidase and further inhibit urate oxidase enzymatic activity.

View Article and Find Full Text PDF

Repeated administration of psychostimulant drugs, such as amphetamine, induces an enhanced behavioral response to subsequent drug challenge. This behavioral sensitization is proposed to model the increased drug craving observed in human psychostimulant abusers. Current thinking is that the ventral tegmental area, but not the nucleus accumbens, plays a critical role in the development of behavioral sensitization.

View Article and Find Full Text PDF

Preclinical evidence in rodents has proven that xenon may be a very promising neuroprotective agent for treating acute ischemic stroke. This has led to the general thinking that clinical trials with xenon could be initiated in acute stroke patients in a next future. However, an unappreciated physicochemical property of xenon has been that this gas also binds to the active site of a series of serine proteases.

View Article and Find Full Text PDF

According to the current model of the basal ganglia organization, simultaneous activation of the striato-nigral direct pathway by glutamatergic and dopaminergic neurotransmission should lead to a synergistic facilitatory action on locomotor activity, while in contrast activation of the indirect pathway by these two neurotransmittions should lead to antagonistic effects on locomotor activity. Based on published data, as a break with the current thinking, we propose a reconceptualization of functional interactions between dopaminergic and glutamatergic neurotransmission. In this model, dopaminergic neurotransmission is seen as a motor pacemaker responsible for the basal and primary activation of striatal output neurons and glutamate as a driver providing a multiple combination of tonic, phasic, facilitatory and inhibitory influxes resulting from the processing of environmental, emotional and mnesic stimuli.

View Article and Find Full Text PDF

During the past decade, studies on the manipulation of various inhaled inert gases during ischemia and/or reperfusion have led to the conclusion that inert gases may be promising agents for treating acute ischemic stroke and perinatal hypoxia-ischemia insults. Although there is a general consensus that among these gases xenon is a golden standard, the possible widespread clinical use of xenon experiences major obstacles, namely its availability and cost of production. Interestingly, recent findings have shown that helium, which is a cost-efficient inert gas with no anesthetic properties, can provide neuroprotection against acute ischemic stroke in vivo when administered during ischemia and early reperfusion.

View Article and Find Full Text PDF

The role of the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) in the expression of behavioural locomotor sensitization to amphetamine (Amph) has been poorly studied. In the present study, we investigated how lidocaine infused in the mPFC or BLA modulated motor responses to acute and repeated (sensitization) Amph administration. We showed that reversible blockade of mPFC or BLA by lidocaine increased both locomotor and rearing responses to acute Amph, but blocked the expression of behavioural sensitization to Amph.

View Article and Find Full Text PDF

Background And Objective: Preliminary studies have shown that nitrous oxide, like xenon, may possess potentially neuroprotective properties. However, because of its possible neurotoxic and proneurotoxic effects (obtained under particular conditions) and its bad reputation at anesthetic concentrations, no thorough investigations have been performed on the potentially neuroprotective properties of nitrous oxide. The aim of this study was to investigate the possible neuroprotective effects of nitrous oxide at nonanesthetic concentrations on different models of excitotoxic insult and brain ischemia.

View Article and Find Full Text PDF

The prefrontal cortex (PFC) and the basolateral amygdala (BLA) play a critical role in the production of normal and abnormal goal-oriented behaviors. Though this may be of critical importance to better understand the neural mechanisms of motivated behaviors and certain psychiatric diseases, the specific role of the glutamatergic afferents arising from the PFC and the BLA in the modulation of locomotion produced by activation in the nucleus accumbens (NAcc) of D1-like receptors or D2-like postsynaptic receptors yet has not been examined. Here, we investigated how focal administration of lidocaine in the PFC or the BLA modulated hyperlocomotion induced by injection in the NAcc core of (i) the selective D1-like receptor agonist, SKF 38393, (ii) co-injection of SKF 38393 and of the selective D2-like receptor agonist LY 171555, a pharmacological condition required for the full expression of the postsynaptic effects of D2-like receptor agonists and believed to produce a locomotor response mainly mediated by D2-like postsynaptic receptors (iii) amphetamine, a psychoactive drug that possesses catecholamine and other neurotransmitters releasing effects.

View Article and Find Full Text PDF

Evidence for functional motor interactions between group I and group III metabotropic glutamatergic (mGlu) receptors and dopamine neurotransmission is now clearly established [David, H.N., Abraini, J.

View Article and Find Full Text PDF

Although the dorsal hippocampus (DH) and the ventral hippocampus (VH) densely innervate the nucleus accumbens, which mediates the expression of behavioural sensitization, the respective and specific contribution of DH and VH in the expression of behavioural sensitization to amphetamine has not been investigated. In the present study, we investigated how lidocaine infused in DH or VH modulated behavioural locomotor sensitization induced by repeated administration of systemic amphetamine. Rats, well habituated to their environmental conditions and experimental protocol, were given repeated administration of systemic amphetamine.

View Article and Find Full Text PDF

Brain insults are a major cause of acute mortality and chronic morbidity. Given the largely ineffective current therapeutic strategies, the development of new and efficient therapeutic interventions is clearly needed. A series of previous investigations has shown that the noble and anesthetic gas xenon, which has low-affinity antagonistic properties at the N-methyl-D-aspartate (NMDA) receptor, also exhibits potentially neuroprotective properties with no proven adverse side effects.

View Article and Find Full Text PDF

The locomotor effects of intra-NAcc injection of dopamine receptor agonists following discrete lesion or inhibition of the DH or the VH have been poorly investigated using only the indirect dopamine receptor agonist amphetamine. In the present study, we investigated how lidocaine in the DH or the VH modulated hyperlocomotion induced by focal injection into the NAcc core of the selective D1-like receptor agonist, SKF 38393, or coinjection of SKF 38393, and the selective D2-like receptor agonist, LY 171555; the latter pharmacological condition being required for the full expression of the postsynaptic effects of D2-like receptor agonists, and recognized to produce a locomotor response mainly mediated by D2-like postsynaptic receptors. Rats were given the D1-like receptor agonist SKF 38393 alone or in combination with the D2-like receptor agonist LY 171555 into the NAcc core, and lidocaine into the DH or the VH.

View Article and Find Full Text PDF

Background: Amphetamine administration induces stimulation-independent dopamine release in the nucleus accumbens (NAcc) through reverse dopamine transport, a critical neurochemical event involved in its psychostimulant action, and furthermore decreases stimulation-dependent vesicular dopamine release. These effects may involve possible indirect glutamatergic mechanisms.

Methods: We investigated the effects of nitrous oxide and xenon, which possess antagonistic action at the N-methyl-D-aspartate (NMDA) receptor, on brain slices ex vivo on amphetamine-induced changes in carrier-mediated and KCl-evoked dopamine release in the NAcc, and in vivo on amphetamine-induced locomotor sensitization.

View Article and Find Full Text PDF