Publications by authors named "Helene Moreau"

Immune cells experience large cell shape changes during environmental patrolling because of the physical constraints that they encounter while migrating through tissues. These cells can adapt to such deformation events using dedicated shape-sensing pathways. However, how shape sensing affects immune cell function is mostly unknown.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are plastic cells playing a pivotal role in the maintenance of immune homeostasis. Tregs actively adapt to the microenvironment where they reside; as a consequence, their molecular and functional profiles differ among tissues and pathologies. In tumors, the features acquired by Tregs remains poorly characterized.

View Article and Find Full Text PDF

Cell polarity is an essential and highly conserved process governing cell function. Cell polarization is generally triggered by an external signal that induces the relocation of the centrosome, thus defining the polarity axis of the cell. Here, we took advantage of B cells as a model to study cell polarity and perform a medium-throughput siRNA-based imaging screen to identify new molecular regulators of polarization.

View Article and Find Full Text PDF

Immune cells are responsible for pathogen detection and elimination, as well as for signaling to other cells the presence of potential danger. In order to mount an efficient immune response, they need to move and search for a pathogen, interact with other cells, and diversify the population by asymmetric cell division. All these actions are regulated by cell polarity: cell polarity controls cell motility, which is crucial for scanning peripheral tissues to detect pathogens, and recruiting immune cells to sites of infection; immune cells, in particular lymphocytes, communicate with each other by a direct contact called immunological synapse, which entails a global polarization of the cell and plays a role in activating lymphocyte response; finally, immune cells divide asymmetrically from a precursor, generating a diversity of phenotypes and cell types among daughter cells, such as memory and effector cells.

View Article and Find Full Text PDF
Article Synopsis
  • Dendritic cells (DCs) are important immune cells that travel through the body to help kickstart our immune responses when they find something harmful.
  • Researchers discovered that in the small intestine, there are two types of these cells, each with different roles: one type helps fight off problems, while the other type is more relaxed and helps keep everything calm.
  • The differences in these cells are influenced by a substance from food called retinoic acid and other signals in the environment, allowing them to adapt and have different jobs in the same area.
View Article and Find Full Text PDF
Article Synopsis
  • - Cell migration is crucial for various physiological processes, including development and immune responses, and is influenced by both physical and chemical signals.
  • - While chemokines have been well-studied, the impact of tissue physical properties, like hydraulic resistance, on cell movement has not received enough attention, especially in the context of disease.
  • - The concept of barotaxis, which involves how cells respond to hydraulic resistance, is explored, including its basic principles and potential implications for immune function and cancer development.
View Article and Find Full Text PDF

Dendritic cells (DCs) devoid of the actin regulator Wiskott-Aldrich syndrome protein (WASp) show reduced directed migration and decreased formation of podosome adhesion structures. We examined DCs expressing a gain-of-function mutation in WASp, WASp L272P, identified in X-linked neutropenia patients. Analysis of WASp L272P DCs was compared to WASp-deficient DCs to examine how WASp activity influences DC migratory responses.

View Article and Find Full Text PDF

Studies in recent years have shed light on the particular features of cytoskeleton dynamics in immune cells, challenging the classical picture drawn from typical adherent cell lines. New mechanisms linking the dynamics of the membrane-cytoskeleton interface to the mechanical properties of immune cells have been uncovered and shown to be essential for immune surveillance functions. In this Essay, we discuss these features, and propose immune cells as a new playground for cell biologists who try to understand how cells adapt to different microenvironments to fulfil their functions efficiently.

View Article and Find Full Text PDF

The migration of immune cells can be guided by physical cues imposed by the environment, such as geometry, rigidity, or hydraulic resistance (HR). Neutrophils preferentially follow paths of least HR in vitro, a phenomenon known as barotaxis. The mechanisms and physiological relevance of barotaxis remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Immune cells rely on their ability to navigate complex environments, either randomly or in specific directions, to identify and respond to antigens.
  • The actin cytoskeleton plays a critical role in enabling the movement of leukocytes, affecting their migratory behavior and responsiveness to environmental signals.
  • Recent research highlights the importance of the actomyosin cytoskeleton in enhancing immune cell migration, with new insights gained from physical modeling techniques.
View Article and Find Full Text PDF

Dendritic cell (DC) trafficking from peripheral tissues to lymph nodes (LNs) is a key step required to initiate T cell responses against pathogens as well as tumors. In this context, cellular membrane protrusions and the actin cytoskeleton are essential to guide DC migration towards chemotactic signals. Caveolin-1 (CAV1) is a scaffolding protein that modulates signaling pathways leading to remodeling of the actin cytoskeleton and enhanced migration of cancer cells.

View Article and Find Full Text PDF

T cells can become activated in lymph nodes following a diverse set of interactions with antigen-presenting cells. These cellular contacts range from short and dynamic to stable and long-lasting interactions, termed kinapses and synapses, respectively. Here, we describe a methodology to generate naïve T cells expressing a fluorescent probe of interest through the generation of bone marrow chimeras and to image T cell dynamics using intravital two-photon microscopy.

View Article and Find Full Text PDF

T Cells can form very stable (synapses) or very transient and migratory (kinapses) contacts with antigen-presenting cells. Here, we describe how microchannels can be used to conveniently study the distinct dynamics of T cells during antigen recognition. Microchannels provide a controlled confined environment that promotes T cell migration and recapitulates kinapse and synapse behaviors when coated with appropriate pMHC molecules.

View Article and Find Full Text PDF
Article Synopsis
  • Targeting TLR3 with polyI:C shows promise as an adjuvant in cancer immunotherapy, especially when combined with anti-PD-L1 treatment.
  • Although polyI:C induces inflammation and type I interferon production in dendritic cells (DCs), it paradoxically impairs CD8+ T cell activation, mainly due to increased PD-L1 expression.
  • The study reveals a novel mechanism where CD40 signaling enhances PD-L1 surface expression in polyI:C-treated DCs, reducing T cell contact and potentially limiting T cell activation, providing insights into improving cancer immunotherapy strategies.
View Article and Find Full Text PDF

Antigen presentation refers to the ability of cells to show MHC-associated determinants to T lymphocytes, leading to their activation. MHC class II molecules mainly present peptide-derived antigens that are internalized by endocytosis in antigen-presenting cells (APCs). Here, we describe how the interface between cellular membranes and the cytoskeleton regulates the various steps that lead to the presentation of exogenous antigens on MHC class II molecules in the two main types of APCs: dendritic cells (DCs) and B lymphocytes.

View Article and Find Full Text PDF

The initiation of T-cell responses in lymph nodes requires T cells to integrate signals delivered by dendritic cells (DCs) during long-lasting contacts (synapses) or more transient interactions (kinapses). However, it remains extremely challenging to understand how a specific sequence of contacts established by T cells ultimately dictates T-cell fate. Here, we have coupled a computational model of T-cell migration and interactions with DCs with a real-time, flow cytometry-like representation of T-cell activation.

View Article and Find Full Text PDF

T lymphocytes are highly motile cells that decelerate upon antigen recognition. These cells can either completely stop or maintain a low level of motility, forming contacts referred to as synapses or kinapses, respectively. Whether similar or distinct molecular mechanisms regulate T-cell deceleration during synapses or kinapses is unclear.

View Article and Find Full Text PDF

A decade ago the first movies depicting T cell behavior in vivo with the help of two-photon microscopy were generated. These initial experiments revealed that T cells migrate rapidly and randomly in secondary lymphoid organs at steady state and profoundly alter their behavior during antigen recognition, establishing both transient and stable contacts with antigen-presenting cells (APCs). Since then, in vivo imaging has continuously improved our understanding of T cell activation.

View Article and Find Full Text PDF

Effector T cell responses rely on a phenotypically and functionally heterogeneous population of cells. Whether this diversity is programmed before clonal expansion or in later phases as a result of stochastic events or asymmetric cell division is not fully understood. In this study, we first took advantage of a sensitive in vitro assay to analyze the composition of single CD8(+) T cell progenies.

View Article and Find Full Text PDF

Ten years ago, in 2002, the introduction of dynamic in vivo imaging to immunologists set a new standard for studying immune responses. In particular, two-photon imaging has provided tremendous insights into immune cell dynamics in various contexts, including infection, cancer, transplantation and autoimmunity. Whereas initial studies were restricted to the migration of and interactions between immune cells, recent advances are bringing intravital imaging to a new level in which cell dynamics and function can be investigated simultaneously.

View Article and Find Full Text PDF

Contraction is a critical phase of immunity whereby the vast majority of effector T cells die by apoptosis, sparing a population of long-lived memory cells. Where, when, and why contraction occurs has been difficult to address directly due in large part to the rapid clearance of apoptotic T cells in vivo. To circumvent this issue, we introduced a genetically encoded reporter for caspase-3 activity into naive T cells to identify cells entering the contraction phase.

View Article and Find Full Text PDF

Upon antigen recognition, T cells form either static (synapses) or migratory (kinapses) contacts with antigen-presenting cells. Addressing whether synapses and kinapses result in distinct T cell receptor (TCR) signals has been hampered by the inability to simultaneously assess T cell phenotype and behavior. Here, we introduced dynamic in situ cytometry (DISC), a combination of intravital multiphoton imaging and flow cytometry-like phenotypic analysis.

View Article and Find Full Text PDF

CD8(+) T cell responses generate effector cells endowed with distinct functional potentials but the contribution of early events in this process is unclear. Here, we have imaged T cells expressing a fluorescent reporter for the activation of the interferon-γ (IFN-γ) locus during priming in lymph nodes. We have demonstrated marked differences in the efficiency of gene activation during stable T cell-dentritic cell (DC) contacts, influenced in part by signal strength.

View Article and Find Full Text PDF
Article Synopsis
  • Roasted coffee has a wide range of volatile organic compounds that contribute to its unique flavor and aroma, and some of these are potentially derived from carotenoids.
  • Researchers measured carotenoid levels in developing coffee grains and found significant amounts of beta-carotene, alpha-carotene, lutein, and others, indicating their presence during grain development.
  • Gene expression analysis showed that carotenoid biosynthetic genes are active at various stages of coffee grain and pericarp development, with higher activity during the immature stages and a decline as the grains mature.
View Article and Find Full Text PDF