Eur Phys J E Soft Matter
January 2025
The creep behavior of an amorphous poly(etherimide) polymer is investigated in the vicinity of its glass transition in a weakly non linear regime where the acceleration of the creep response is driven by local configurational rearrangements. From the time shifts of the creep compliance curves under stresses from 1 to 15 MPa and in the temperature range between and , where is the glass transition temperature, we determine a macroscopic acceleration factor. The macroscopic acceleration is shown to vary as temperature with , where is the macroscopic stress and Y is a decreasing function of compliance.
View Article and Find Full Text PDFWe took advantage of pseudopartial wetting to promote the spreading of precursor films whose surface density smoothly decays to zero away from a sessile droplet. By following the spreading dynamics of semidilute precursor films of polybutadiene melts on silicon wafers, we measure molecular diffusion coefficients for different molar masses and temperatures. For homopolymers, chains follow a thermally activated 2D Rouse diffusion mechanism, with an activation energy revealing polymer segment interactions with the surface.
View Article and Find Full Text PDFWe investigate the evolution over time of the space profiles of precursor films spreading away from a droplet of polymer in the poorly explored pseudo-partial wetting case. We use polystyrene melt droplets on oxidized silicon wafers. Interestingly, the film thicknesses measured by ellispometric microscopy are found in the 0.
View Article and Find Full Text PDFThe slowing-down of the dynamics of a polymer chain near a surface has been observed for many years now. Here we show that the behavior of model nanocomposites can be quantitatively described with a gradient of glass-transition temperature. We describe with a single parameter-the range of this gradient-the temperature and solvent effect on the spin relaxation dynamics.
View Article and Find Full Text PDF