The exposure of plants to high concentrations of trace metallic elements such as copper involves a remodeling of the root system, characterized by a primary root growth inhibition and an increase in the lateral root density. These characteristics constitute easy and suitable markers for screening mutants altered in their response to copper excess. A forward genetic approach was undertaken in order to discover novel genetic factors involved in the response to copper excess.
View Article and Find Full Text PDFFerrous iron toxicity is a mineral disorder frequently occurring under waterlogged soils where rice is cultivated. To decipher the main metabolic pathways involved in rice response to iron excess, seedlings have been exposed to 125 mg L(-1) FeSO(4) for 3 weeks. A combined transcriptomic, biochemical and physiological study has been performed after short-term (3 d) or long-term (3 weeks) exposure to iron in order to elucidate the strategy of stress adaptation with time.
View Article and Find Full Text PDFGrowth, in particular reorganization of the root system architecture, mineral homeostasis and root hormone distribution were studied in Arabidopsis thaliana upon copper excess. Five-week-old Arabidopsis plants growing in hydroponics were exposed to different Cu(2+) concentrations (up to 5 muM). Root biomass was more severely inhibited than shoot biomass and Cu was mainly retained in roots.
View Article and Find Full Text PDF