The emergence and persistence of polymorphism within populations generally requires specific regimes of natural or sexual selection. Here, we develop a unified theoretical framework to explore how polymorphism at targeted loci can be generated and maintained by either disassortative mating choice or balancing selection due to, for example, heterozygote advantage. To this aim, we model the dynamics of alleles at a single locus A in a population of haploid individuals, where reproductive success depends on the combination of alleles carried by the parents at locus A.
View Article and Find Full Text PDFAs a cellular intrinsic mechanism leading to cellular demise, apoptosis was thoroughly characterized from a mechanistic perspective. Nowadays there is an increasing interest in describing the non-cell autonomous or community effects of apoptosis, especially in the context of resistance to cancer treatments. Transitioning from cell-centered to cell population-relevant mechanisms adds a layer of complexity for imaging and analyzing an enormous number of apoptotic events.
View Article and Find Full Text PDFThe decomposition of soil organic matter (SOM) is a critical process in global terrestrial ecosystems. SOM decomposition is driven by micro-organisms that cooperate by secreting costly extracellular (exo-)enzymes. This raises a fundamental puzzle: the stability of microbial decomposition in spite of its evolutionary vulnerability to "cheaters"-mutant strains that reap the benefits of cooperation while paying a lower cost.
View Article and Find Full Text PDFBull Math Biol
September 2018
More and more evidence shows that mating preference is a mechanism that may lead to a reproductive isolation event. In this paper, a haploid population living on two patches linked by migration is considered. Individuals are ecologically and demographically neutral on the space and differ only on a trait, a or A, affecting both mating success and migration rate.
View Article and Find Full Text PDFDivergence between populations for a given trait can be driven by sexual selection, interacting with migration behaviour. Mating preference for different phenotypes may lead to specific migration behaviour, with departures from populations where the preferred trait is rare. Such preferences can then trigger the emergence and persistence of differentiated populations, even without any local adaptation.
View Article and Find Full Text PDFMechanisms leading to speciation are a major focus in evolutionary biology. In this paper, we present and study a stochastic model of population where individuals, with type a or A, are equivalent from ecological, demographical and spatial points of view, and differ only by their mating preference: two individuals with the same genotype have a higher probability to mate and produce a viable offspring. The population is subdivided in several patches and individuals may migrate between them.
View Article and Find Full Text PDF