Publications by authors named "Helene Le Ribeuz"

Pulmonary arterial hypertension (PAH) is a severe disease caused by progressive distal pulmonary artery obstruction. One cause of PAH are loss-of-function mutations in the potassium channel subfamily K member 3 (KCNK3). KCNK3 encodes a two-pore domain potassium channel, which is crucial for pulmonary circulation homeostasis.

View Article and Find Full Text PDF

Cilia defects lead to scoliosis in zebrafish, but the underlying pathogenic mechanisms are poorly understood and may diverge depending on the mutated gene. Here, we dissected the mechanisms of scoliosis onset in a zebrafish mutant for the gene encoding a ciliary transition zone protein. mutant fish developed scoliosis with near-total penetrance but asynchronous onset in juveniles.

View Article and Find Full Text PDF

Pulmonary arterial (PA) hypertension (PAH) is a severe cardiopulmonary disease that may be triggered by exposure to drugs such as dasatinib or facilitated by genetic predispositions. The incidence of dasatinib-associated PAH is estimated at 0.45%, suggesting individual predispositions.

View Article and Find Full Text PDF

The ATP-sensitive potassium channels and their regulatory subunits, sulfonylurea receptor 1 (SUR1/Kir6.2) and SUR2/Kir6.1, contribute to the pathophysiology of pulmonary hypertension (PH).

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is due to progressive distal pulmonary artery (PA) obstruction, leading to right ventricular hypertrophy and failure. Exacerbated store-operated Ca entry (SOCE) contributes to PAH pathogenesis, mediating human PA smooth muscle cell (hPASMC) abnormalities. The transient receptor potential canonical channels (TRPC family) are Ca-permeable channels contributing to SOCE in different cell types, including PASMCs.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the role of the ATP-sensitive K channels (KATP) regulatory subunits (SUR2A and SUR2B) in the development of pulmonary arterial hypertension (PAH) and explores their potential as therapeutic targets.* -
  • Researchers analyzed the expression of SUR2A, SUR2B, and Kir6.1 in both healthy controls and PAH patients, using rat models to observe the effects of SUR2 activation on pulmonary artery relaxation and cell behavior.* -
  • The findings indicate that activating SUR2 channels can reduce symptoms associated with PAH and may be a promising approach for developing new treatments for the disease.*
View Article and Find Full Text PDF

Background: Pulmonary arterial hypertension (PAH) is characterized by progressive distal pulmonary artery (PA) obstruction, leading to right ventricular hypertrophy and failure. Exacerbated intracellular calcium (Ca) signaling contributes to abnormalities in PA smooth muscle cells (PASMCs), including aberrant proliferation, apoptosis resistance, exacerbated migration, and arterial contractility. Store-operated Ca entry is involved in Ca homeostasis in PASMCs, but its properties in PAH are unclear.

View Article and Find Full Text PDF

Endothelial dysfunction is a key player in advancing vascular pathology in pulmonary arterial hypertension (PAH), a disease essentially characterized by intense remodeling of the pulmonary vasculature, vasoconstriction, endothelial dysfunction, inflammation, oxidative stress, and thrombosis in situ. These vascular features culminate in an increase in pulmonary vascular resistance, subsequent right heart failure, and premature death. Over the past years, there has been a great development in our understanding of pulmonary endothelial biology related to the genetic and molecular mechanisms that modulate the endothelial response to direct or indirect injury and how their dysregulation can promote PAH pathogenesis.

View Article and Find Full Text PDF

Mutations in have been identified in pulmonary arterial hypertension (PAH). encodes SUR1, a regulatory subunit of the ATP-sensitive potassium channel Kir6.2.

View Article and Find Full Text PDF

Introduction: A reduction in pulmonary artery relaxation is a key event in the pathogenesis of pulmonary arterial hypertension (PAH). Cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction in airway epithelial cells plays a central role in cystic fibrosis; CFTR is also expressed in pulmonary arteries and has been shown to control endothelium-independent relaxation.

Aim And Objectives: We aimed to delineate the role of CFTR in PAH pathogenesis through observational and interventional experiments in human tissues and animal models.

View Article and Find Full Text PDF

Aims: Pulmonary hypertension (PH) is a common complication of left heart disease (LHD, Group 2 PH) leading to right ventricular (RV) failure and death. Several loss-of-function (LOF) mutations in KCNK3 were identified in pulmonary arterial hypertension (PAH, Group 1 PH). Additionally, we found that KCNK3 dysfunction is a hallmark of PAH at pulmonary vascular and RV levels.

View Article and Find Full Text PDF

The physiopathology of pulmonary arterial hypertension (PAH) is characterized by pulmonary artery smooth muscle cell (PASMC) and endothelial cell (PAEC) dysfunction, contributing to pulmonary arterial obstruction and PAH progression. KCNK3 loss of function mutations are responsible for the first channelopathy identified in PAH. Loss of KCNK3 function/expression is a hallmark of PAH.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a rare and severe cardiopulmonary disease without curative treatments. PAH is a multifactorial disease that involves genetic predisposition, epigenetic factors, and environmental factors (drugs, toxins, viruses, hypoxia, and inflammation), which contribute to the initiation or development of irreversible remodeling of the pulmonary vessels. The recent identification of loss-of-function mutations in (KCNK3 or TASK-1) and (SUR1), or gain-of-function mutations in (SUR2), as well as polymorphisms in (Kv1.

View Article and Find Full Text PDF

Background: The pathogenesis of pulmonary arterial hypertension (PAH) involves many signalling pathways. MicroRNAs are potential candidates involved in simultaneously coordinating multiple genes under such multifactorial conditions.

Methods And Results: MiR-138-5p is overexpressed in pulmonary arterial smooth muscle cells (PASMCs) from PAH patients and in lungs from rats with monocrotaline-induced pulmonary hypertension (MCT-PH).

View Article and Find Full Text PDF