Publications by authors named "Helene Labit"

The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase is tightly regulated to ensure programmed proteolysis in cells. The activity of the APC/C is positively controlled by cyclin-dependent kinase (CDK), but a second level of control must also exist because phosphorylation inactivates Cdc20, a mitotic APC/C co-activator. How Cdc20 is dephosphorylated specifically, when CDK is high, has remained unexplained.

View Article and Find Full Text PDF

Molecular combing of DNA is an extremely powerful DNA fiber-stretching technique that is often used in DNA replication and genome stability studies. Optimal DNA combing results mainly depend on the quality of the silanized surfaces onto which fibers are stretched. Here we describe an improved method of liquid-phase silanization using trimethoxy-octenylsilane/n-heptane as novel silane/solvent combination.

View Article and Find Full Text PDF

Replication origins in Xenopus egg extracts are located at apparently random sequences but are activated in clusters that fire at different times during S phase under the control of ATR/ATM kinases. We investigated whether chromosomal domains and single sequences replicate at distinct times during S phase in egg extracts. Replication foci were found to progressively appear during early S phase and foci labelled early in one S phase colocalized with those labelled early in the next S phase.

View Article and Find Full Text PDF

Background: Eukaryotic cells seem unable to monitor replication completion during normal S phase, yet must ensure a reliable replication completion time. This is an acute problem in early Xenopus embryos since DNA replication origins are located and activated stochastically, leading to the random completion problem. DNA combing, kinetic modelling and other studies using Xenopus egg extracts have suggested that potential origins are much more abundant than actual initiation events and that the time-dependent rate of initiation, I(t), markedly increases through S phase to ensure the rapid completion of unreplicated gaps and a narrow distribution of completion times.

View Article and Find Full Text PDF

The Origin Recognition Complex (ORC) is a critical component of replication initiation. We have previously reported generation of an Orc2 hypomorph cell line (Delta/-) that expresses very low levels of Orc2 but is viable. We have shown here that Chk2 is phosphorylated, suggesting that DNA damage checkpoint pathways are activated.

View Article and Find Full Text PDF