The application of the selective allosteric M1 muscarinic and sigma-1 receptor agonist, AF710B (aka ANAVEX3-71), has shown to attenuate Alzheimer's disease-like hallmarks in McGill-R-Thy1-APP transgenic rats when administered at advanced pathological stages. It remains unknown whether preventive treatment strategies applying this compound may be equally effective. We tested whether daily oral administration of AF710B (10 µg/kg) in 7-month-old, preplaque, McGill-R-Thy1-APP rats for 7 months, followed by a 4-week washout period, could prevent Alzheimer's disease-like pathological hallmarks.
View Article and Find Full Text PDFBasal forebrain cholinergic neurons (BFCNs) represent the main source of cholinergic innervation to the cortex and hippocampus and degenerate early in Alzheimer's disease (AD) progression. Phenotypic maintenance of BFCNs depends on levels of mature nerve growth factor (mNGF) and mature brain-derived neurotrophic factor (mBDNF), produced by target neurons and retrogradely transported to the cell body. Whether a reciprocal interaction where BFCN inputs impact neurotrophin availability and affect cortical neuronal markers remains unknown.
View Article and Find Full Text PDFAims: The locus coeruleus (LC) is the main source of noradrenaline (NA) in the mammalian brain and has been found to degenerate during the initial stages of Alzheimer's disease (AD). Recent studies indicate that at late stages of the amyloid pathology, LC-pathological alterations accelerate AD-like pathology progression by interfering with the neuromodulatory and anti-inflammatory properties of NA. However, the impact of LC degeneration at the earliest stages of amyloidosis on the AD-like pathology is not well understood.
View Article and Find Full Text PDFEpidemiological, preclinical, and clinical studies have suggested a role for microdose lithium in reducing Alzheimer's disease (AD) risk by modulating key mechanisms associated with AD pathology. The novel microdose lithium formulation, NP03, has disease-modifying effects in the McGill-R-Thy1-APP transgenic rat model of AD-like amyloidosis at pre-plaque stages, before frank amyloid-β (Aβ) plaque deposition, during which Aβ is primarily intraneuronal. Here, we are interested in determining whether the positive effects of microdose lithium extend into early Aβ post-plaque stages.
View Article and Find Full Text PDFThe assembly of tau protein into abnormal filaments and brain cell degeneration are characteristic of a number of human neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia and parkinsonism linked to chromosome 17. Several murine models have been generated to better understand the mechanisms contributing to tau assembly and neurodegeneration. Taking advantage of the more elaborate central nervous system and higher cognitive abilities of the rat, we generated a model expressing the longest human tau isoform (2N4R) with the P301S mutation.
View Article and Find Full Text PDFThis Mini Review discusses the merits and shortfalls of transgenic (tg) rodents modeling aspects of the human Alzheimer's disease (AD) pathology and their application to evaluate experimental therapeutics. It addresses some of the differences between mouse and rat tg models for these investigations. It relates, in a condensed fashion, the experience of our research laboratory with the application of anti-inflammatory compounds and S-adenosylmethionine (SAM) at the earliest stages of AD-like amyloid pathology in tg mice.
View Article and Find Full Text PDFFront Neurosci
February 2019
Emerging research has re-emphasized the role of the cortical cholinergic system in the symptomology and progression of Alzheimer's disease (AD). Basal forebrain (BF) cholinergic nuclei depend on target-derived NGF for survival during development and for the maintenance of a classical cholinergic phenotype during adulthood. In AD, BF cholinergic neurons lose their cholinergic phenotype and function, suggesting an impairment in NGF-mediated trophic support.
View Article and Find Full Text PDFBackground: Microdose lithium is protective against Alzheimer's disease (AD), although the precise mechanisms through which its protective effects are conferred remain unclear.
Objective: To further examine the effects during the earliest stages of Aβ pathology, we evaluated whether NP03, a microdose lithium formulation, modulates Aβ-mediated oxidative damage and neuroinflammation when applied to a rat transgenic model of AD-like amyloidosis overexpressing amyloid precursor protein (APP).
Method: McGill-R-Thy1-APP transgenic rats and wild-type littermates were treated with NP03 or vehicle formulation for 8 weeks beginning at 3 months of age - a phase preceding Aβ plaque deposition in the transgenic rats.
Introduction: AF710B (aka ANAVEX 3-71) is a novel selective allosteric M1 muscarinic and sigma-1 receptor agonist. In 3×Tg-AD mice, AF710B attenuates cognitive deficits and decreases Alzheimer-like hallmarks. We now report on the long-lasting disease-modifying properties of AF710B in McGill-R-Thy1-APP transgenic (Tg) rats.
View Article and Find Full Text PDFBackground: Alpha-synuclein (asyn) has been shown to play an important role in the neuropathology of Parkinson's disease (PD). In the diseased brain, classic intraneuronal inclusions called Lewy bodies contain abnormal formations of asyn protein which is mostly phosphorylated at serine 129 (pS129 asyn). This suggests that post-translational modifications may play a role in the pathogenic process.
View Article and Find Full Text PDFThe neuropathological substrate of dementia in patients with Parkinson's disease is still under debate, particularly in patients with insufficient alternate neuropathology for other degenerative dementias. In patients with pure Lewy body Parkinson's disease, previous post-mortem studies have shown that dopaminergic and cholinergic regulatory projection systems degenerate, but the exact pathways that may explain the development of dementia in patients with Parkinson's disease remain unclear. Studies in rodents suggest that both the mesocorticolimbic dopaminergic and septohippocampal cholinergic pathways may functionally interact to regulate certain aspects of cognition, however, whether such an interaction occurs in humans is still poorly understood.
View Article and Find Full Text PDFIntraneuronal inclusions containing alpha-synuclein (a-syn) constitute one of the pathological hallmarks of Parkinson's disease (PD) and are accompanied by severe neurodegeneration of A9 dopaminergic neurons located in the substantia nigra. Although to a lesser extent, A10 dopaminergic neurons are also affected. Neurodegeneration of other neuronal populations, such as the cholinergic, serotonergic and noradrenergic cell groups, has also been documented in PD patients.
View Article and Find Full Text PDFCholine acetyltransferase (ChAT) is the key enzyme for acetylcholine (ACh) synthesis and constitutes a reliable marker for the integrity of cholinergic neurons. Cortical ChAT activity is decreased in the brain of patients suffering from Alzheimer's and Parkinson's diseases. The standard method used to measure the activity of ChAT enzyme relies on a very sensitive radiometric assay, but can only be performed on post-mortem tissue samples.
View Article and Find Full Text PDFMagnetic resonance spectroscopy (MRS) is a non-invasive technique that can be used to detect and quantify multiple metabolites. This chapter will review some of the applications of MRS to the study of brain functions. Typically, (1)H-MRS can detect metabolites reflecting neuronal density and integrity, markers of energy metabolism or inflammation, as well as neurotransmitters.
View Article and Find Full Text PDFChemical shifts of protons can report on metabolic transformations such as the conversion of choline to phosphocholine. To follow such processes in vivo, magnetization can be enhanced by dynamic nuclear polarization (DNP). We have hyperpolarized in this manner nitrogen-15 spins in (15)N-labeled choline up to 3.
View Article and Find Full Text PDFViral vector-mediated gene transfer is emerging as a novel therapeutic approach with clinical utility in treatment of Parkinson's disease. Recombinant adeno-associated viral (rAAV) vector in particular has been utilized for continuous l-3,4 dihydroxyphenylalanine (DOPA) delivery by expressing the tyrosine hydroxylase (TH) and GTP cyclohydrolase 1 (GCH1) genes which are necessary and sufficient for efficient synthesis of DOPA from dietary tyrosine. The present study was designed to determine the optimal stoichiometric relationship between TH and GCH1 genes for ectopic DOPA production and the cellular machinery involved in its synthesis, storage, and metabolism.
View Article and Find Full Text PDF