Now that access of large domestic mammals to high-field MRI becomes more common, techniques initially implemented for human patients can be used for the structural and functional study of the brain of these animals. Among them, susceptibility-weighted imaging (SWI) is a recent technique obtained from gradient echo (GE) imaging that allow for an excellent anatomical tissue contrast and a non-invasive assessment of brain iron content. The goal of this study was to design an optimal GE SWI imaging protocol to be used in dogs undergoing an MRI examination of the brain in a 3-Tesla scanner.
View Article and Find Full Text PDFBackground: Posterior fossa tumors represent two thirds of brain tumors in children. Although progress in treatment has improved survival rates over the past few years, long-term memory impairments in survivors are frequent and have an impact on academic achievement. The hippocampi, cerebellum and cerebellar-cortical networks play a role in several memory systems.
View Article and Find Full Text PDFBrain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to segment WMHs, a gold standard has not been achieved and their longitudinal reproducibility has been poorly investigated. The aim of present work is to evaluate accuracy and reproducibility of two freely available segmentation algorithms.
View Article and Find Full Text PDFBackground: The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults.
Methods: Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1-90 days).
New bifunctional and bimodal nanoparticles (NPs) have been elaborated and characterised. They are based on silica NPs that incorporate a silylated ruthenium tris-bipyridine complex. The resulting suspension of amine-modified NPs with diameters of 20 nm was post-functionalised with a stable gadolinium ion complex.
View Article and Find Full Text PDFFree water elimination (FWE) in brain diffusion MRI has been shown to improve tissue specificity in human white matter characterization both in health and in disease. Relative to the classical diffusion tensor imaging (DTI) model, FWE is also expected to increase sensitivity to microstructural changes in longitudinal studies. However, it is not clear if these two models differ in their test-retest reproducibility.
View Article and Find Full Text PDFUnderstanding how to reduce the influence of physiological noise in resting state fMRI data is important for the interpretation of functional brain connectivity. Limited data is currently available to assess the performance of physiological noise correction techniques, in particular when evaluating longitudinal changes in the default mode network (DMN) of healthy elderly participants. In this 3T harmonized multisite fMRI study, we investigated how different retrospective physiological noise correction (rPNC) methods influence the within-site test-retest reliability and the across-site reproducibility consistency of DMN-derived measurements across 13 MRI sites.
View Article and Find Full Text PDFTo date, limited data are available regarding the inter-site consistency of test-retest reproducibility of functional connectivity measurements, in particular with regard to integrity of the Default Mode Network (DMN) in elderly participants. We implemented a harmonized resting-state fMRI protocol on 13 clinical scanners at 3.0T using vendor-provided sequences.
View Article and Find Full Text PDFRecently, there has been an increased interest in the use of automatically segmented subfields of the human hippocampal formation derived from magnetic resonance imaging (MRI). However, little is known about the test-retest reproducibility of such measures, particularly in the context of multisite studies. Here, we report the reproducibility of automated Freesurfer hippocampal subfields segmentations in 65 healthy elderly enrolled in a consortium of 13 3T MRI sites (five subjects per site).
View Article and Find Full Text PDFLarge-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people.
View Article and Find Full Text PDFWe have synthesized gadolinium oxysulfide nanoparticles (NPs) doped with other lanthanides (Eu(3+), Er(3+), Yb(3+)) via a hydroxycarbonate precursor precipitation route followed by a sulfuration process under a H2S-Ar atmosphere at 750 °C in order to propose new multimodal nanoplatforms for Magnetic Resonance (MR), X-ray and photoluminescence imaging. Gd2O2S:Eu(3+) NPs strongly absorb near UV (≈ 300-400 nm) and re-emit strong red light (624 nm). They can be easily internalized by cancer cells, and imaged by epifluorescence microscopy under excitation in the NUV (365 nm).
View Article and Find Full Text PDFLarge-scale longitudinal multi-site MRI brain morphometry studies are becoming increasingly crucial to characterize both normal and clinical population groups using fully automated segmentation tools. The test-retest reproducibility of morphometry data acquired across multiple scanning sessions, and for different MR vendors, is an important reliability indicator since it defines the sensitivity of a protocol to detect longitudinal effects in a consortium. There is very limited knowledge about how across-session reliability of morphometry estimates might be affected by different 3T MRI systems.
View Article and Find Full Text PDF