Glioblastoma is considered the most common malignant primary tumor of central nervous system. In spite of the current standard and multimodal treatment, the prognosis of glioblastoma is poor. For this reason, new therapeutic approaches need to be developed to improve the survival time of the glioblastoma patient.
View Article and Find Full Text PDFGlioblastoma is the most aggressive primary brain tumor leading to death in most of patients. It comprises almost 50-55% of all gliomas with an incidence rate of 2-3 per 100,000. Despite its rarity, overall mortality of glioblastoma is comparable to the most frequent tumors.
View Article and Find Full Text PDFThe acoustic vibrations of single monomers and dimers of gold nanoparticles were investigated by measuring for the first time their ultralow-frequency micro-Raman scattering. This experiment provides access not only to the frequency of the detected vibrational modes but also to their damping rate, which is obscured by inhomogeneous effects in measurements on ensembles of nano-objects. This allows a detailed analysis of the mechanical coupling occurring between two close nanoparticles (mediated by the polymer surrounding them) in the dimer case.
View Article and Find Full Text PDFResonant acoustic modes from ultrathin CdS colloidal nanoplatelets (NPLs) are probed under high pressure using low frequency Raman spectroscopy. In particular we focus on the characterization of the recently evidenced mass load effect that is responsible for a significant downshift of the NPL breathing frequency due to the inert mass of organic ligands. We show that a key parameter in the observation of the mass effect is whether the surrounding medium is able to support THz acoustic wave propagation, at a frequency close to that of the inorganic vibrating core.
View Article and Find Full Text PDFResonant acoustic modes of ultrathin CdS and CdSe colloidal nanoplatelets (NPLs) with varying thicknesses were probed using low frequency Raman scattering. The spectra are dominated by an intense band ascribed to the thickness breathing mode of the 2D nanostructures. The measured Raman frequencies show strong deviations with respect to the values expected for simple bare plates, all the more so as the thickness is reduced.
View Article and Find Full Text PDFNanoparticles containing high-Z elements are known to boost the efficacy of radiation therapy. Gadolinium (Gd) is particularly attractive because this element is also a positive contrast agent for MRI, which allows for the simultaneous use of imaging to guide the irradiation and to delineate the tumor. In this study, we used the Gd-based nanoparticles, AGuIX®.
View Article and Find Full Text PDFThe grafting of stimuli-responsive polymer brushes on plasmonic structures provides a perfectly controlled two-dimensional active device with optical properties that can be modified through external stimuli. Herein, we demonstrate thermally induced modifications of the plasmonic response of lithographic gold nanoparticles functionalized by thermosensitive polymer brushes of (poly(N-isopropylacrylamide), PNIPAM). Optical modifications result from refractive local index changes due to a phase transition from a hydrophilic state (swollen regime) to a hydrophobic state (collapsed regime) of the polymer chains occurring in a very small range of temperatures.
View Article and Find Full Text PDFIn the present work, the combination of chemical immobilization with electron beam lithography enables the production of sensitive and reproducible SERS-active areas composed of stochastic arrangements of gold nanoparticles. The number of nanoparticles was varied from 2 to 500. Thereby a systematic analysis of these SERS-active areas allows us to study SERS efficiency as a function of the number of nanoparticles.
View Article and Find Full Text PDFThis paper describes a general stepwise strategy combining diazonium salt, surface-initiated atom transfer radical polymerization (SI-ATRP), and click chemistry for an efficient gold surface functionalization by poly(N-isopropylacrylamide) (PNIPAM) brushes and gold nanoparticle assemblies. We designed by this way a new plasmonic device made of gold nanoparticles separated from a gold film through a thermoresponsive polymer layer. This organic layer responds to temperature variations by conformational changes (with a characteristic temperature called the lower critical solution temperature, LCST) and is therefore able to vary the distance between the gold nanoparticles and the gold film.
View Article and Find Full Text PDFThis paper describes a general stepwise strategy combining diazonium salt and click chemistries for an efficient gold surface functionalization by gold nanoparticles. The procedure first involves the strong covalent bonding to gold electrodes of OH-terminated aryl layers derived from the electroreduction of the parent diazonium salts. The following step consists in transforming the OH end-groups to azides in order to obtain "clickable"-active gold surfaces, which could further be used as versatile platforms for the subsequent grafting of acetylene-bearing molecules.
View Article and Find Full Text PDF