Chemoradiation therapy is on the forefront of pancreatic cancer care, and there is a continued effort to improve its safety and efficacy. Liposomes are widely used to improve chemotherapy safety, and may accurately deliver high-Z element- radiocatalytic nanomaterials to cancer tissues. In this study, the interaction between X-rays and long-circulating nanoliposome formulations loaded with gold nanoclusters is explored in the context of oxaliplatin chemotherapy for desmoplastic pancreatic cancer.
View Article and Find Full Text PDFCell therapy is promising to treat many conditions, including neurological and osteoarticular diseases. Encapsulation of cells within hydrogels facilitates cell delivery and can improve therapeutic effects. However, much work remains to be done to align treatment strategies with specific diseases.
View Article and Find Full Text PDFNanotheranostics
February 2023
The objective of this study was to demonstrate that synchrotron K-edge subtraction tomography (SKES-CT) can simultaneously track therapeutic cells and their encapsulating carrier, in a rat model of focal brain injury using a dual-contrast agent approach. The second objective was to determine if SKES-CT could be used as a reference method for spectral photon counting tomography (SPCCT). Phantoms containing different concentrations of gold and iodine nanoparticles (AuNPS/INPs) were imaged with SKES-CT and SPCCT to assess their performances.
View Article and Find Full Text PDFThe activation of phagocytic cells is a hallmark of many neurological diseases. Imaging them in their 3-dimensional cerebral environment over time is crucial to better understand their role in disease pathogenesis and to monitor their potential therapeutic effects. Phagocytic cells have the ability to internalize metal-based contrast agents both in vitro and in vivo and can thus be tracked by magnetic resonance imaging (MRI) or computed tomography (CT).
View Article and Find Full Text PDFBiological tissues contain various metals and metalloids ions with central role in the regulation of several pathophysiological functions. In parallel, the development and the evaluation of novel nanocompounds for biomedicine require the monitoring of their biodistribution in tissues of interest. Therefore, researchers need to use reliable and accessible techniques to detect and quantify major and trace elements in space-resolved manner.
View Article and Find Full Text PDFWhen investigating the promise of novel therapeutic modalities, the choice of an appropriate and reproducible in vivo model is critical to determine the relevance of the findings. In the case of glioblastoma, a high-grade glioma tumor that is clinically characterized by a high infiltrative pattern, no existing model exactly mimics the clinical features of these tumors. However, a syngeneic rat model of glioblastoma in which F98 cells are orthotopically implanted can recapitulate most of the characteristics of glioma as observed in patients, including a highly aggressive nature, a high degree of infiltration of cancer cells into healthy tissue, and a strong resistance to commonly used treatments including radiotherapy and chemotherapy.
View Article and Find Full Text PDFWhite-matter injury leads to severe functional loss in many neurological diseases. Myelin staining on histological samples is the most common technique to investigate white-matter fibers. However, tissue processing and sectioning may affect the reliability of 3D volumetric assessments.
View Article and Find Full Text PDFPurpose: To compare patient radiation doses in cone beam computed tomography (CBCT) of two mobile systems used for navigation-assisted mini-invasive orthopedic surgery: O-arm®O2 and Surgivisio®.
Methods: The study focused on imaging of the spine. Thermoluminescent dosimeters were used to measure organs and effective doses (ED) during CBCT.
Delivery of high-radiation doses to brain tumors via multiple arrays of synchrotron X-ray microbeams permits huge therapeutic advantages. Brain tumor (9LGS)-bearing and normal rats were irradiated using a conventional, homogeneous Broad Beam (BB), or Microbeam Radiation Therapy (MRT), then studied by behavioral tests, MRI, and histopathology. A valley dose of 10 Gy deposited between microbeams, delivered by a single port, improved tumor control and median survival time of tumor-bearing rats better than a BB isodose.
View Article and Find Full Text PDFPeritoneal carcinomatosis occurs frequently in patients with advanced stage gastrointestinal and gynecological cancers. The wide-spread peritoneal micrometastases indicate a poor outlook, as the tumors are difficult to diagnose and challenging to completely eradicate with cytoreductive surgery and chemotherapeutics. Photodynamic diagnosis (PDD) and therapy (PDT), modalities that use photosensitizers for fluorescence detection or photochemical treatment of cancer, are promising theranostic approaches for peritoneal carcinomatosis.
View Article and Find Full Text PDFBackground: The purpose of this review is to summarize our own experimental studies carried out over a 13-year period of time using the F98 rat glioma as model for high grade gliomas. We evaluated a binary chemo-radiotherapeutic modality that combines either cisplatin (CDDP) or carboplatin, administered intracerebrally (i.c.
View Article and Find Full Text PDFUltra-small gold nanoclusters (AuNCs) are increasingly investigated for cancer imaging and radiotherapy enhancement. While fine-tuning the AuNC surface chemistry can optimize their pharmacokinetics, its effects on radiotherapy enhancement remain largely unexplored. This study demonstrates that optimizing the surface chemistry of AuNCs for increased tumor uptake can significantly affect its potential to augment radiotherapy outcomes.
View Article and Find Full Text PDFPurpose: Nanoparticles appear as a novel tool to enhance the effectiveness of radiotherapy in cancer treatments. Many parameters influence their efficacy, such as their size, concentration, composition, their cellular localization, as well as the photon source energy. The current Monte Carlo study aims at comparing the dose-enhancement in presence of gadolinium (Gd), either as isolated atoms or atoms clustered in nanoparticles (NPs), by investigating the role played by these physical parameters at the cellular and the nanometer scale.
View Article and Find Full Text PDFA fast positioning method for brain tumor microbeam irradiations for preclinical studies at third-generation X-ray sources is described. The three-dimensional alignment of the animals relative to the X-ray beam was based on the X-ray tomography multi-slices after iodine infusion. This method used pink-beam imaging produced by the ID17 wiggler.
View Article and Find Full Text PDFThe goal of the present study was to evaluate and compare the radiosensitizing properties of gadolinium nanoparticles (NPs) with the gadolinium contrast agent (GdCA) Magnevist(®) in order to better understand the mechanisms by which they act as radiation sensitizers. This was determined following either low energy synchrotron irradiation or high energy gamma irradiation of F98 rat glioma cells exposed to ultrasmall gadolinium NPs (GdNPs, hydrodynamic diameter of 3 nm) or GdCA. Clonogenic assays were used to quantify cell survival after irradiation in the presence of Gd using monochromatic x-rays with energies in the 25 keV-80 keV range from a synchrotron and 1.
View Article and Find Full Text PDFUnlabelled: Radiosensitization efficacy of gold nanoparticles (AuNPs) with low energy radiations (88 keV) was evaluated in vitro and in vivo on rats bearing glioma. In vitro, a significant dose-enhancement factor was measured by clonogenic assays after irradiation with synchrotron radiation of F98 glioma cells in presence of AuNPs (1.9 and 15 nm in diameter).
View Article and Find Full Text PDF75 RG2 glioma-carrying Fischer rats were treated by photon activation therapy (PAT) with monochromatic synchrotron radiation and stable thallium. Three groups were treated with thallium in combination with radiation at different energy; immediately below and above the thallium K-edge, and at 50 keV. Three control groups were given irradiation only, thallium only, or no treatment at all.
View Article and Find Full Text PDFThe purpose of this study was to evaluate two novel liposomal formulations of cisplatin as potential therapeutic agents for treatment of the F98 rat glioma. The first was a commercially produced agent, Lipoplatin™, which currently is in a Phase III clinical trial for treatment of non-small cell lung cancer (NSCLC). The second, produced in our laboratory, was based on the ability of cisplatin to form coordination complexes with lipid cholesteryl hemisuccinate (CHEMS).
View Article and Find Full Text PDFBackground: The purpose of the present study was to compare side-by-side the therapeutic efficacy of a 6-day infusion of carboplatin, followed by X-irradiation with either 6 MV photons or synchrotron X-rays, tuned above the K-edge of Pt, for treatment of F98 glioma bearing rats.
Methods: Carboplatin was administered intracerebrally (i.c.
Purpose: The purpose of this study was to evaluate high-dose single fraction delivered with monochromatic X-rays minibeams for the radiotherapy of primary brain tumors in rats.
Methods And Materials: Two groups of healthy rats were irradiated with one anteroposterior minibeam incidence (four minibeams, 123 Gy prescribed dose at 1 cm depth in the brain) or two interleaved incidences (54 Gy prescribed dose in a 5 × 5 × 4.8 mm(3) volume centered in the right hemisphere), respectively.
In this report we have summarized our studies to optimize the delivery of boronophenylalanine (BPA) and sodium borocaptate (BSH) for boron neutron capture therapy (BNCT) of F98 glioma bearing rats. These results have been compared to a chemoradiotherapeutic approach using the same tumor model. The best survival data from our BNCT studies were obtained using a combination of BPA and sodium borocaptate BSH administered via the internal carotid artery, in combination with blood-brain barrier disruption (BBB-D).
View Article and Find Full Text PDFThe purpose of this study was to further evaluate the therapeutic efficacy of convection enhanced delivery (CED) of carboplatin in combination with radiotherapy for treatment of the F98 rat glioma. Tumor cells were implanted stereotactically into the brains of syngeneic Fischer rats, and 13 or 17 d. later carboplatin (20 μg/10 μl) was administered by either CED over 30 min or by Alzet osmotic pumps (0.
View Article and Find Full Text PDFWe have evaluated the efficacy of intracerebral (i.c.) convection-enhanced delivery (CED) of cisplatin in combination with photon irradiation for the treatment of F98 glioma-bearing rats.
View Article and Find Full Text PDFIodine-enhanced synchrotron stereotactic radiotherapy takes advantage of the radiation dose-enhancement produced by high-Z elements when irradiated with mono-energetic beams of synchrotron X-rays. In this study it has been investigated whether therapeutic efficacy could be improved using a thymidine analogue, 5-iodo-2'-deoxyuridine (IUdR), as a radiosentizing agent. IUdR was administered intracerebrally over six days to F98 glioma-bearing rats using Alzet osmotic pumps, beginning seven days after tumor implantation.
View Article and Find Full Text PDF