We describe the preparation, characterization, and imaging studies of rhenium carbonyl complexes with a pyta (4-(2-pyridyl)-1,2,3-triazole) or tapy (1-(2-pyridyl)-1,2,3-triazole)-based heteroaromatic N∧N ligand and thiolate or selenoate X ligand. The stability and photophysical properties of the selenolate complexes are compared with parent chloride complexes and previously described analogues with benzenethiolate ligands. Two complexes were imaged in A549 cells upon excitation at 405 nm.
View Article and Find Full Text PDFReactive oxygen species (ROS) are produced by every aerobic cell during mitochondrial oxidative metabolism as well as in cellular response to xenobiotics, cytokines, and bacterial invasion. Superoxide Dismutases (SOD) are antioxidant proteins that convert superoxide anions (O) to hydrogen peroxide (HO) and dioxygen. Using the differential in the level of oxidative stress between normal and cancer cells, SOD mimetics can show an antitumoral effect and prevent oxaliplatin-induced peripheral neuropathy.
View Article and Find Full Text PDFSuperoxide dismutases (SODs) are metalloproteins that protect cells against oxidative stress by controlling the concentration of superoxide (O) through catalysis of its dismutation. The activity of superoxide dismutases can be mimicked by low-molecular-weight complexes having potential therapeutic applications. This review presents recent strategies for designing efficient SOD mimics, from molecular metal complexes to nanomaterials.
View Article and Find Full Text PDFThe 285 GHz EPR spectra of perchlorotriphenylmethyl and tetrathiatriarylmethyl radicals in frozen solution have been accurately measured. The relationship between their molecular structures and their g-tensors has been investigated with the aid of DFT calculations, revealing that the degree of spin density delocalization away from the central methylene carbon is an important determining factor of the g-anisotropy. In particular, the small amount of spin densities on the Cl or S heteroatoms at the 2 and 6 positions with respect to the central carbon have the strongest influence.
View Article and Find Full Text PDFA superoxide dismutase mimic (Mn1) was functionalized with three positively charged-peptides: RRRRRRRRR (Mn1-R9), RRWWWRRWRR (Mn1-RW9) or F-r-F-K (Mn1-MPP). Characterization of the physico-chemical properties of the complexes show that they share similar binding affinity for Mn, apparent reduction potential and intrinsic superoxide dismutase activity. However, their accumulation in cells is different (Mn1-R9 < Mn1-MPP < Mn1-RW9 < Mn1), as well as their subcellular distribution.
View Article and Find Full Text PDFBy using the differential in level of oxidative status between normal and cancer cells, SuperOxide Dismutase (SOD) mimetics can have anti-tumor efficacy and prevent oxaliplatin-induced peripheral neuropathy. Our objective was to evaluate the neuroprotective efficacy of MAG, a new SOD mimic. , the effects of MAG alone or with oxaliplatin were studied on colon cancer cells (HT29 and CT26) and on normal fibroblast cells (NIH3T3).
View Article and Find Full Text PDFThe nucleoprotein (NP) of influenza A virus (IAV) required for IAV replication is a promising target for new antivirals. We previously identified by in silico screening naproxen being a dual inhibitor of NP and cyclooxygenase COX2, thus combining antiviral and anti-inflammatory effects. However, the recently shown strong COX2 antiviral potential makes COX2 inhibition undesirable.
View Article and Find Full Text PDFHyaluronic acids were labeled with a rhenium-tricarbonyl used as single core multimodal probe for imaging and their penetration into human skin biopsies was studied using IR microscopy and fluorescence imaging (labeled SCoMPI). The penetration was shown to be dependent on the molecular weight of the molecule and limited to the upper layer of the skin.
View Article and Find Full Text PDFTelomeres protect the ends of chromosomes against illegitimate recombination and repair. They can be targets for G-quadruplex ligands and platinum complexes due to their repeated G-rich sequences. Protection of telomeres is ensured by a complex of six proteins, including TRF2, which inhibits the DNA damage response pathway.
View Article and Find Full Text PDFNrf2, a transcriptional activator of cell protection genes, is an attractive therapeutic target for the prevention of neurodegenerative diseases, including Alzheimer's disease (AD). Current Nrf2 activators, however, may exert toxicity and pathway over-activation can induce detrimental effects. An understanding of the mechanisms mediating Nrf2 inhibition in neurodegenerative conditions may therefore direct the design of drugs targeted for the prevention of these diseases with minimal side-effects.
View Article and Find Full Text PDFA series of [Re(N^N)(CO)(X)] (N^N = diimine and X = halide) complexes based on 4-(2-pyridyl)-1,2,3-triazole (pyta) and 1-(2-pyridyl)-1,2,3-triazole (tapy) diimine ligands have been prepared and electrochemically characterized. The first ligand-based reduction process is shown to be highly sensitive to the nature of the isomer as well as to the substituents on the pyridyl ring, with the peak potential changing by up to 700 mV. The abilities of this class of complexes to catalyze the electroreduction and photoreduction of CO were assessed for the first time.
View Article and Find Full Text PDFSeveral compounds bearing the indolinone chemical scaffold are known to possess anticancer properties. For example, the tyrosine kinase inhibitor sunitinib is an arylideneindolin-2-one compound. The chemical versatility associated with structural modifications of indolinone compounds underlies the potential to discover additional derivatives possessing anticancer properties.
View Article and Find Full Text PDFHigh-spin gadolinium(III) and manganese(II) complexes have emerged as alternatives to standard nitroxide radical spin labels for measuring nanometric distances by using pulsed electron-electron double resonance (PELDOR or DEER) at high fields/frequencies. For certain complexes, particularly those with relatively small zero-field splitting (ZFS) and short distances between the two metal centers, the pseudosecular term of the dipolar coupling Hamiltonian is non-negligible. However, in general, the contribution from this term during conventional data analysis is masked by the flexibility of the molecule of interest and/or the long tethers connecting them to the spin labels.
View Article and Find Full Text PDFAn organometallic derivative of praziquantel was studied directly in worms by using inductively coupled plasma-mass spectrometry (ICP-MS) for quantification and synchrotron-based imaging. X-ray fluorescence (XRF) and IR absorption spectromicroscopy were used for the first time in combination to directly locate this organometallic drug candidate in schistosomes. The detection of both CO (IR) and Cr (XRF) signatures proved that the Cr(CO)3 core remained intact in the worms.
View Article and Find Full Text PDFA genetically encodable paramagnetic spin-label capable of self-assembly from naturally available components would offer a means for studying the in-cell structure and interactions of a protein by electron paramagnetic resonance (EPR). Here, we demonstrate pulse electron-electron double resonance (DEER) measurements on spin-labels consisting of Mn(II) ions coordinated to a sequence of histidines, so-called His-tags, that are ubiquitously added by genetic engineering to facilitate protein purification. Although the affinity of His-tags for Mn(II) was low (800 μM), Mn(II)-bound His-tags yielded readily detectable DEER time traces even at concentrations expected in cells.
View Article and Find Full Text PDFPulse electron-electron double resonance (PELDOR) is a versatile technique for probing the structures and functions of complex biological systems. Despite the recent interest in high-spin metal-ions for high field/frequency applications, PELDOR measurements of Mn(ii) remain relatively underexplored. Here we present Mn(ii)-Mn(ii) PELDOR distance measurements at 94 GHz on polyproline II (PPII) helices doubly spin-labeled with Mn(ii)DOTA, which are distinguished by their small zero-field interaction.
View Article and Find Full Text PDFDisruption of the interaction between the ubiquitination facilitator protein Keap1 and the cap'n'collar basic-region leucine-zipper transcription factor Nrf2 is a potential strategy to enhance expression of antioxidant and free radical detoxification gene products regulated by Nrf2. Agents that disrupt this protein-protein interaction may be useful pharmacological probes and future cancer-chemopreventive agents. We describe the structure-activity relationships for a series of peptides based upon regions of the Nrf2 Neh2 domain, of varying length and sequence, that interact with the Keap1 Kelch domain and disrupt the interaction with Nrf2.
View Article and Find Full Text PDF