A dengue vaccine capable of rapidly eliciting a robust and balanced immunity against the four virus serotypes after only a few immunizations is greatly needed. We describe a new strategy to develop dengue vaccines based on the assembly of virus-like particles (VLPs) utilizing the structural proteins CprME together with a modified complex of the NS2B/NS3 protease, which enhances particle formation and yield. These VLPs are produced in mammalian cells and resemble native dengue virus as demonstrated by negative staining and immunogold labelling electron microscopy (EM).
View Article and Find Full Text PDFThe newly emerged mosquito-borne Zika virus poses a major public challenge due to its ability to cause significant birth defects and neurological disorders. The impact of sexual transmission is unclear but raises further concerns about virus dissemination. No specific treatment or vaccine is currently available, thus the development of a safe and effective vaccine is paramount.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is the leading cause of severe respiratory disease in infants and children and represents an important global health burden for the elderly and the immunocompromised. Despite decades of research efforts, no licensed vaccine for RSV is available. We have developed virus-like particle (VLP)-based RSV vaccines assembled with the human metapneumovirus (hMPV) matrix protein (M) as the structural scaffold and the RSV fusion glycoprotein (F) in either the postfusion or prefusion conformation as its prime surface immunogen.
View Article and Find Full Text PDF