Background: A key step in domestication of the grapevine was the transition from separate sexes (dioecy) in wild Vitis vinifera ssp. sylvestris (V. sylvestris) to hermaphroditism in cultivated Vitis vinifera ssp.
View Article and Find Full Text PDF-derived tetrahydrocannabinol (THC) production is increasing very fast worldwide. is a dioecious plant with XY Chromosomes, and only females (XX) are useful for THC production. Identifying the sex chromosome sequence would improve early sexing and better management of this crop; however, the genome projects have failed to do so.
View Article and Find Full Text PDFConvergent adaptation provides unique insights into the predictability of evolution and ultimately into processes of biological diversification. Supergenes (beneficial gene linkage) are striking examples of adaptation, but little is known about their prevalence or evolution. A recent study on anther-smut fungi documented supergene formation by rearrangements linking two key mating-type loci, controlling pre- and post-mating compatibility.
View Article and Find Full Text PDFRoses have high cultural and economic importance as ornamental plants and in the perfume industry. We report the rose whole-genome sequencing and assembly and resequencing of major genotypes that contributed to rose domestication. We generated a homozygous genotype from a heterozygous diploid modern rose progenitor, Rosa chinensis 'Old Blush'.
View Article and Find Full Text PDFSex chromosomes can display successive steps of recombination suppression known as "evolutionary strata," which are thought to result from the successive linkage of sexually antagonistic genes to sex-determining genes. However, there is little evidence to support this explanation. Here we investigate whether evolutionary strata can evolve without sexual antagonism using fungi that display suppressed recombination extending beyond loci determining mating compatibility despite lack of male/female roles associated with their mating types.
View Article and Find Full Text PDFBackground: Anther-smut fungi belonging to the genus Microbotryum sterilize their host plants by aborting ovaries and replacing pollen by fungal spores. Sibling Microbotryum species are highly specialized on their host plants and they have been widely used as models for studies of ecology and evolution of plant pathogenic fungi. However, most studies have focused, so far, on M.
View Article and Find Full Text PDFRecent advancements in sequencing technology allowed researchers to better address the patterns and mechanisms involved in microbial environmental adaptation at large spatial scales. Here we investigated the genomic basis of adaptation to climate at the continental scale in Suillus brevipes, an ectomycorrhizal fungus symbiotically associated with the roots of pine trees. We used genomic data from 55 individuals in seven locations across North America to perform genome scans to detect signatures of positive selection and assess whether temperature and precipitation were associated with genetic differentiation.
View Article and Find Full Text PDFNuclear disasters at Chernobyl and Fukushima provide examples of effects of acute ionizing radiation on mutations that can affect the fitness and distribution of species. Here, we investigated the prevalence of Microbotryum lychnidis-dioicae, a pollinator-transmitted fungal pathogen of plants causing anther-smut disease in Chernobyl, its viability, fertility and karyotype variation, and the accumulation of nonsynonymous mutations in its genome. We collected diseased flowers of Silene latifolia from locations ranging by more than two orders of magnitude in background radiation, from 0.
View Article and Find Full Text PDFBackground: The genus Microbotryum includes plant pathogenic fungi afflicting a wide variety of hosts with anther smut disease. Microbotryum lychnidis-dioicae infects Silene latifolia and replaces host pollen with fungal spores, exhibiting biotrophy and necrosis associated with altering plant development.
Results: We determined the haploid genome sequence for M.
Sex chromosomes in plants and animals and fungal mating-type chromosomes often show exceptional genome features, with extensive suppression of homologous recombination and cytological differentiation between members of the diploid chromosome pair. Despite strong interest in the genetics of these chromosomes, their large regions of suppressed recombination often are enriched in transposable elements and therefore can be challenging to assemble. Here we show that the latest improvements of the PacBio sequencing yield assembly of the whole genome of the anther-smut fungus, Microbotryum lychnidis-dioicae (the pathogenic fungus causing anther-smut disease of Silene latifolia), into finished chromosomes or chromosome arms, even for the repeat-rich mating-type chromosomes and centromeres.
View Article and Find Full Text PDFDimorphic mating-type chromosomes in fungi are excellent models for understanding the genomic consequences of recombination suppression. Their suppressed recombination and reduced effective population size are expected to limit the efficacy of natural selection, leading to genomic degeneration. Our aim was to identify the sequences of the mating-type chromosomes (a1 and a2) of the anther-smut fungi and to investigate degeneration in their nonrecombining regions.
View Article and Find Full Text PDFFungi are ideal model organisms for dissecting the genomic bases of adaptive divergence in eukaryotes. They have simple morphologies and small genomes, occupy contrasting, well-identified ecological niches and tend to have short generation times, and many are amenable to experimental approaches. Fungi also display diverse lifestyles, from saprotrophs to pathogens or mutualists, and they play extremely important roles in both ecosystems and human activities, as wood decayers, mycorrhizal fungi, lichens, endophytes, plant and animal pathogens, and in fermentation or drug production.
View Article and Find Full Text PDFBackground: Despite the recent sequencing of seven ant genomes, no genomic data are available for the genus Formica, an important group for the study of eusocial traits. We sequenced the transcriptome of the ant Formica exsecta with the 454 FLX Titanium technology from a pooled sample of workers from 70 Finnish colonies.
Results: About 1,000,000 reads were obtained from a normalised cDNA library.