Staphylococcus aureus (S. aureus) colonizes humans asymptomatically but can also cause opportunistic infections, ranging from mild skin infections to severe life-threatening conditions. Resistance and tolerance are two ways a host can survive an infection.
View Article and Find Full Text PDFFolate is a vitamin required for cell growth and is present in fortified foods in the form of folic acid to prevent congenital abnormalities. The impact of low-folate status on life-long health is poorly understood. We found that limiting folate levels with the folate antagonist methotrexate increased the lifespan of yeast and worms.
View Article and Find Full Text PDFStaphylococcus aureus (S. aureus) is an opportunistic pathogen causing diseases ranging from mild skin infections to life threatening conditions, including endocarditis, pneumonia, and sepsis. To identify host genes modulating this host-pathogen interaction, we infected 25 Collaborative Cross (CC) mouse strains with methicillin-resistant S.
View Article and Find Full Text PDFFolate is a vitamin required for cell growth and is present in fortified foods in the form of folic acid to prevent congenital abnormalities. The impact of low folate status on life-long health is poorly understood. We found that limiting folate levels with the folate antagonist methotrexate increased the lifespan of yeast and worms.
View Article and Find Full Text PDFLouis Pasteur's experiments on tartaric acid laid the foundation for our understanding of molecular chirality, but major questions remain. By comparing the optical activity of naturally-occurring tartaric acid with chemically-synthesized paratartaric acid, Pasteur realized that naturally-occurring tartaric acid contained only L-tartaric acid while paratartaric acid consisted of a racemic mixture of D- and L-tartaric acid. Curiously, D-tartaric acid has no known natural source, yet several gut bacteria specifically degrade D-tartaric acid.
View Article and Find Full Text PDFserovar Typhimurium induces intestinal inflammation to create a niche that fosters the outgrowth of the pathogen over the gut microbiota. Under inflammatory conditions, utilizes terminal electron acceptors generated as byproducts of intestinal inflammation to generate cellular energy through respiration. However, the electron donating reactions in these electron transport chains are poorly understood.
View Article and Find Full Text PDFBackground: The human gut microbiota is a complex community comprised of trillions of bacteria and is critical for the digestion and absorption of nutrients. Bacterial communities of the intestinal microbiota influence the development of several conditions and diseases. We studied the effect of host genetics on gut microbial composition using Collaborative Cross (CC) mice.
View Article and Find Full Text PDFThis paper concerns the identification of gene co-expression modules in transcriptomics data, i.e. collections of genes which are highly co-expressed and potentially linked to a biological mechanism.
View Article and Find Full Text PDFChicks are ideal to follow the development of the intestinal microbiota and to understand how a pathogen perturbs this developing population. Taxonomic/metagenomic analyses captured the development of the chick microbiota in unperturbed chicks and in chicks infected with Salmonella enterica serotype Typhimurium (STm) during development. Taxonomic analysis suggests that colonization by the chicken microbiota takes place in several waves.
View Article and Find Full Text PDFUnderstanding the molecular mechanisms underlying resistance and tolerance to pathogen infection may present the opportunity to develop novel interventions. Resistance is the absence of clinical disease with a low pathogen burden, while tolerance is minimal clinical disease with a high pathogen burden. is a worldwide health concern.
View Article and Find Full Text PDFRetrons are prokaryotic genetic retroelements encoding a reverse transcriptase that produces multi-copy single-stranded DNA (msDNA). Despite decades of research on the biosynthesis of msDNA, the function and physiological roles of retrons have remained unknown. Here we show that Retron-Sen2 of Salmonella enterica serovar Typhimurium encodes an accessory toxin protein, STM14_4640, which we renamed as RcaT.
View Article and Find Full Text PDFSalmonella infections typically cause self-limiting gastroenteritis, but in some individuals these bacteria can spread systemically and cause disseminated disease. Salmonella Typhimurium (STm), which causes severe systemic disease in most inbred mice, has been used as a model for disseminated disease. To screen for new infection phenotypes across a range of host genetics, we orally infected 32 Collaborative Cross (CC) mouse strains with STm and monitored their disease progression for seven days by telemetry.
View Article and Find Full Text PDFNon-typhoidal are capable of colonizing livestock and humans, where they can progressively cause disease. Previously, a library of targeted single-gene deletion mutants of serotype Typhimurium was inoculated to ligated ileal loops in calves to identify genes under selection. Of those genes identified, a cluster of genes is related to carbohydrate metabolism and transportation.
View Article and Find Full Text PDFRecent developments in both biological data acquisition and analysis provide new opportunities for data-driven modelling of the health state of an organism. In this paper, we explore the evolution of temperature patterns generated by telemetry data collected from healthy and infected mice. We investigate several techniques to visualize and identify anomalies in temperature time series as temperature relates to the onset of infectious disease.
View Article and Find Full Text PDFNon-typhoidal Salmonella can colonize the gastrointestinal system of cattle and can also cause significant food-borne disease in humans. The use of a library of single-gene deletions in Salmonella enterica serotype Typhimurium allowed identification of several proteins that are under selection in the intestine of cattle. STM2437 ( yfeJ) encodes one of these proteins, and it is currently annotated as a type I glutamine amidotransferase.
View Article and Find Full Text PDFSalmonella Typhimurium (S. Tm) establishes systemic infection in susceptible hosts by evading the innate immune response and replicating within host phagocytes. Here, we sought to identify inhibitors of intracellular S.
View Article and Find Full Text PDFserovar Enteritidis is a common cause of foodborne illness in the United States. The bacterium can be transmitted to humans via contaminated chicken meat and eggs, and virulence in humans requires type III secretion system 1 (TTSS-1), encoded on pathogenicity island 1 (SPI-1). Chickens often carry Enteritidis subclinically, obscuring the role of SPI-1 in facilitating bacterial colonization.
View Article and Find Full Text PDFNeutrophils are innate immune response cells designed to kill invading microorganisms. One of the mechanisms neutrophils use to kill bacteria is generation of damaging reactive oxygen species (ROS) via the respiratory burst. However, during enteric salmonellosis, neutrophil-derived ROS actually facilitates Salmonella expansion and survival in the gut.
View Article and Find Full Text PDFpyrE (STM3733) encodes orotate phosphoribosyltransferase (OPRTase; EC 2.4.2.
View Article and Find Full Text PDFThe mucosal inflammatory response induced by Salmonella serovar Typhimurium creates a favorable niche for this gut pathogen. Conventional wisdom holds that S. Typhimurium undergoes an incomplete tricarboxylic acid (TCA) cycle in the anaerobic mammalian gut.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2017
Many microorganisms produce phosphonates, molecules characterized by stable carbon-phosphorus bonds that store phosphorus or act as antimicrobials. The role of phosphonates in the marine biosphere is well characterized but the role of these molecules in the intestine is poorly understood. uses its virulence factors to influence the host immune response to compete with the host and normal microflora for nutrients.
View Article and Find Full Text PDFIntestinal inflammation caused by Salmonella enterica serovar Typhimurium increases the availability of electron acceptors that fuel a respiratory growth of the pathogen in the intestinal lumen. Here we show that one of the carbon sources driving this respiratory expansion in the mouse model is 1,2-propanediol, a microbial fermentation product. 1,2-propanediol utilization required intestinal inflammation induced by virulence factors of the pathogen.
View Article and Find Full Text PDFSalmonellae are pathogenic bacteria that cause significant morbidity and mortality in humans worldwide. Salmonellae establish infection and avoid clearance by the immune system by mechanisms that are not well understood. We previously showed that l-asparaginase II produced by Salmonella enterica serovar Typhimurium (S Typhimurium) inhibits T cell responses and mediates virulence.
View Article and Find Full Text PDFIntestinal epithelial cells provide an important colonization niche for Salmonella enterica serovar Typhimurium during gastrointestinal infections. In infected epithelial cells, a subpopulation of S Typhimurium bacteria damage their internalization vacuole, leading to escape from the Salmonella-containing vacuole (SCV) and extensive proliferation in the cytosol. Little is known about the bacterial determinants of nascent SCV lysis and subsequent survival and replication of Salmonella in the cytosol.
View Article and Find Full Text PDF