Publications by authors named "Helena X Wang"

Currently, non-invasive methods for studying the human brain do not routinely and reliably measure spike-rate-dependent signals, independent of responses such as hemodynamic coupling (fMRI) and subthreshold neuronal synchrony (oscillations and event-related potentials). In contrast, invasive methods-microelectrode recordings and electrocorticography (ECoG)-have recently measured broadband power elevation in field potentials (~50-200 Hz) as a proxy for locally averaged spike rates. Here, we sought to detect and quantify stimulus-related broadband responses using magnetoencephalography (MEG).

View Article and Find Full Text PDF

Neurons in area MT/V5 of the macaque visual cortex encode visual motion. Some cells are selective for the motion of oriented features (component direction-selective, CDS); others respond to the true direction of complex patterns (pattern-direction selective, PDS). There is a continuum of selectivity in MT, with CDS cells at one extreme and PDS cells at the other; we compute a pattern index that captures this variation.

View Article and Find Full Text PDF

Small saccades occur frequently during fixation, and are coupled to changes in visual stimulation and cognitive state. Neurophysiologically, fixational saccades reflect neural activity near the foveal region of a continuous visuomotor map. It is well known that competitive interactions between neurons within visuomotor maps contribute to target selection for large saccades.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) studies have relied on multivariate analysis methods to decode visual motion direction from measurements of cortical activity. Above-chance decoding has been commonly used to infer the motion-selective response properties of the underlying neural populations. Moreover, patterns of reliable response biases across voxels that underlie decoding have been interpreted to reflect maps of functional architecture.

View Article and Find Full Text PDF

First-order (contrast) surround suppression has been well characterized both psychophysically and physiologically,but relatively little is known as to whether the perception of second-order visual stimuli exhibits analogous center–surround interactions. Second-order surround suppression was characterized by requiring subjects to detect second-order modulation in stimuli presented alone or embedded in a surround.Both contrast- (CM) and orientation-modulated (OM) stimuli were used.

View Article and Find Full Text PDF

The deployment of eye movements to complex spatiotemporal stimuli likely involves a variety of cognitive factors. However, eye movements to movies are surprisingly reliable both within and across observers. We exploited and manipulated that reliability to characterize observers' temporal viewing strategies while they viewed naturalistic movies.

View Article and Find Full Text PDF