Publications by authors named "Helena Slaets"

Loss of proper T-cell functioning is a feature of aging that increases the risk of developing chronic diseases. In aged individuals, highly differentiated T cells arise with a reduced expression of CD28 and CD27 and an increased expression of KLRG-1 or CD57. These cells are often referred to as immunosenescent T cells but may still be highly active and contribute to autoimmunity.

View Article and Find Full Text PDF

Oligodendrocyte precursor cells (OPCs) comprise 5-8 % of the adult glial cell population and stand out as the most proliferative cell type in the central nervous system (CNS). OPCs are responsible for generating oligodendrocytes (OLs), the myelinating cells of the CNS. However, OPC functions decline as we age, resulting in impaired differentiation and inadequate remyelination.

View Article and Find Full Text PDF

Frailty and a failing immune system lead to significant morbidities in the final years of life and bring along a significant burden on healthcare systems. The good news is that regular exercise provides an effective countermeasure for losing muscle tissue when we age while supporting proper immune system functioning. For a long time, it was assumed that exercise-induced immune responses are predominantly mediated by myeloid cells, but it has become evident that they receive important help from T lymphocytes.

View Article and Find Full Text PDF

Oncostatin M (OSM) is an IL-6 family member which exerts neuroprotective and remyelination-promoting effects after damage to the central nervous system (CNS). However, the role of OSM in neuro-inflammation is poorly understood. Here, we investigated OSM's role in pathological events important for the neuro-inflammatory disorder multiple sclerosis (MS).

View Article and Find Full Text PDF

Background: Current treatments for functional dyspepsia have limited efficacy or present safety issues. We aimed to assess spore-forming probiotics in functional dyspepsia as monotherapy or add-on therapy to long-term treatment with proton-pump inhibitors.

Methods: In this single-centre, randomised, double-blind, placebo-controlled pilot trial that took place at University Hospitals Leuven (Leuven, Belgium), adult patients (≥18 years) with functional dyspepsia (as defined by Rome IV criteria, on proton-pump inhibitors or off proton-pump inhibitors) were randomly assigned (1:1) via computer-generated blocked lists, stratified by proton-pump inhibitor status, to receive 8 weeks of treatment with probiotics (Bacillus coagulans MY01 and Bacillus subtilis MY02, 2·5 × 10 colony-forming units per capsule) or placebo consumed twice per day, followed by an open-label extension phase of 8 weeks.

View Article and Find Full Text PDF

The brain's endogenous capacity to restore damaged myelin deteriorates during the course of demyelinating disorders. Currently, no treatment options are available to establish remyelination. Chronic demyelination leads to damaged axons and irreversible destruction of the central nervous system (CNS).

View Article and Find Full Text PDF

The aim of this study is to examine whether the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), can generate dendritic cells (DCs) with a stable tolerogenic phenotype to counteract autoimmune responses in an animal model of multiple sclerosis. We investigated if the tolerogenic potency of DCs could be increased by continuous treatment during in vitro differentiation toward DCs compared to standard 24-h in vitro treatment of already terminally differentiated DCs. We show that in vitro treatment with SAHA reduces the generation of new CD11c(+) DCs out of mouse bone marrow.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic disabling autoimmune disease of the central nervous system. The interleukin (IL)-6 cytokine family plays a crucial role in regulating the immune response in MS. All members of the IL-6 family share the common signal-transducing receptor protein, glycoprotein 130.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic disabling disease of the central nervous system (CNS), in which destruction of myelin sheaths leads to disturbed axonal conduction. Available MS therapies modulate the immune response, but are unable to prevent neurological decline. Therefore, great efforts are made to develop therapies that limit demyelination and axonal degeneration.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS), for which current treatments are unable to prevent disease progression. Based on its neuroprotective and neuroregenerating properties, leukemia inhibitory factor (LIF), a member of the interleukin-6 (IL-6) cytokine family, is proposed as a novel candidate for MS therapy. However, its effect on the autoimmune response remains unclear.

View Article and Find Full Text PDF

The family of interleukin (IL)-6 like cytokines plays an important role in the neuroinflammatory response to injury by regulating both neural as well as immune responses. Here, we show that expression of the IL-6 family member oncostatin M (OSM) and its receptor is upregulated after spinal cord injury (SCI). To reveal the relevance of increased OSM signaling in the pathophysiology of SCI, OSM was applied locally after spinal cord hemisection in mice.

View Article and Find Full Text PDF

Demyelination is one of the pathological hallmarks of multiple sclerosis (MS). To date, no therapy is available which directly potentiates endogenous remyelination. Interleukin-11 (IL-11), a member of the gp130 family of cytokines, is upregulated in MS lesions.

View Article and Find Full Text PDF

Transcriptomic and proteomic analyses of multiple sclerosis (MS) lesions indicate alterations in the gamma-aminobutyric acid (GABA) inhibitory system, suggesting its involvement in the disease process. To further elucidate the role of GABA in central nervous system (CNS) inflammation in vivo, the chronic myelin oligodendrocyte glycoprotein (MOG)(35-55) experimental autoimmune encephalomyelitis (EAE) model was used. Daily GABA injections (200mg/kg) from day 3 onwards significantly augmented disease severity, which was associated with increased CNS mRNA expression levels of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6.

View Article and Find Full Text PDF

Therapies for multiple sclerosis (MS) reduce the relapse rate but are unable to stop neurological decline. Here, we evaluate the potential of leukemia inhibitory factor (LIF) as a novel therapeutic in diseases with a neurodegenerative and inflammatory component, such as MS. LIF, which can be a proinflammatory cytokine, can also modulate the immune response in a beneficial way.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) with an inflammatory and a neurodegenerative component. The neuropoietic cytokine leukemia inhibitory factor (LIF) is expressed in MS lesions, but its effect on lesion development is far from understood. LIF is an interesting candidate for MS therapy, as it has neuroprotective properties and may also promote the survival of myelinating oligodendrocytes (OLGs).

View Article and Find Full Text PDF

Leukemia inhibitory factor (LIF) promotes survival of glial cells and neurons during autoimmune and injury responses in the central nervous system (CNS). While various studies indicate that LIF also modulates ongoing inflammatory responses, data on underlying events are lacking. In this study we demonstrate that LIF modulates macrophage function.

View Article and Find Full Text PDF

Leukemia inhibitory factor (LIF) promotes the survival of oligodendrocytes (OLG) both in vitro and in an animal model of multiple sclerosis. Here, we show that LIF protects mature rat OLG cultures selectively against the combined insult of the proinflammatory cytokines interferon-gamma and tumor necrosis factor-alpha, but it does not protect against oxidative stress nor against staurosporine induced apoptosis. We further demonstrate that LIF activates the janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) and the phosphatidylinositol 3 kinase/Akt pathway in mature OLG.

View Article and Find Full Text PDF