Publications by authors named "Helena Sabanay"

Recognizing the life cycle of an organism is key to understanding its biology and ecological impact. Emiliania huxleyi is a cosmopolitan marine microalga, which displays a poorly understood biphasic sexual life cycle comprised of a calcified diploid phase and a morphologically distinct biflagellate haploid phase. Diploid cells (2N) form large-scale blooms in the oceans, which are routinely terminated by specific lytic viruses (EhV).

View Article and Find Full Text PDF

In the lysosomal storage disorder Gaucher disease (GD), glucosylceramide (GlcCer) accumulates due to the defective activity of glucocerebrosidase. A subset of GD patients develops neuropathology. We now show mislocalization of Limp2-positive puncta and a large reduction in the number of Lamp1-positive puncta, which are associated with impaired tubulin.

View Article and Find Full Text PDF

Adhesion of epithelial cell to each other and to extracellular matrix, as well as cell migration ability and cytoskeleton organization undergo significant alterations in the course of neoplastic transformation, but regulatory mechanisms involved in these processes are not fully understood. Here, we studied the role of a Rho GAP protein GRAF1 (GTPase Regulator Associated with Focal adhesion kinase-1) in the regulation of the epithelial phenotype in cells of breast derived, non-malignant, MCF10A cell line. GRAF1 was shown to be localized to cell-cell junctions, and its depletion resulted in accelerated cell migration velocity, elongation of the cells and cell colonies, impaired monolayer integrity and significant disruption of desmosomes with a loss of associated keratin filaments.

View Article and Find Full Text PDF

A genetically encoded system for expression of supramolecular protein assemblies (SMPAs) based on a fusion construct between ferritin and citrine (YFP) was transferred from a mammalian to a bacterial host. The assembly process is revealed to be independent of the expression host, while dimensions and level of order of the assembled structures were influenced by the host organism. An additional level of interactions, namely, coalescence between the preformed SMPAs, was observed during the purification process.

View Article and Find Full Text PDF

Marine viruses are recognized as a major driving force regulating phytoplankton community composition and nutrient cycling in the oceans. Yet, little is known about mechanisms that influence viral dispersal in aquatic systems, other than physical processes, and that lead to the rapid demise of large-scale algal blooms in the oceans. Here, we show that copepods, abundant migrating crustaceans that graze on phytoplankton, as well as other zooplankton can accumulate and mediate the transmission of viruses infecting Emiliania huxleyi, a bloom-forming coccolithophore that plays an important role in the carbon cycle.

View Article and Find Full Text PDF

Marine photosynthetic microorganisms are the basis of marine food webs and are responsible for nearly 50% of the global primary production. Emiliania huxleyi forms massive oceanic blooms that are routinely terminated by large double-stranded DNA coccolithoviruses. The cellular mechanisms that govern the replication cycle of these giant viruses are largely unknown.

View Article and Find Full Text PDF

NK cells rapidly kill tumor cells, virus infected cells and even self cells. This is mediated via killer receptors, among which NKp46 (NCR1 in mice) is prominent. We have recently demonstrated that in type 1 diabetes (T1D) NK cells accumulate in the diseased pancreas and that they manifest a hyporesponsive phenotype.

View Article and Find Full Text PDF

Farber disease is an inherited metabolic disorder caused by mutations in the acid ceramidase gene, which leads to ceramide accumulation in lysosomes. Farber disease patients display a wide variety of symptoms with most patients eventually displaying signs of nervous system dysfunction. We now present a novel tool that could potentially be used to distinguish between the milder and more severe forms of the disease, namely, an antibody that recognizes a mixed monolayer or bilayer of cholesterol:C16-ceramide, but does not recognize either ceramide or cholesterol by themselves.

View Article and Find Full Text PDF

The interaction between myelinating Schwann cells and the axons they ensheath is mediated by cell adhesion molecules of the Cadm/Necl/SynCAM family. This family consists of four members: Cadm4/Necl4 and Cadm1/Necl2 are found in both glia and axons, whereas Cadm2/Necl3 and Cadm3/Necl1 are expressed by sensory and motor neurons. By generating mice lacking each of the Cadm genes, we now demonstrate that Cadm4 plays a role in the establishment of the myelin unit in the peripheral nervous system.

View Article and Find Full Text PDF

Myelinating Schwann cells regulate the localization of ion channels on the surface of the axons they ensheath. This function depends on adhesion complexes that are positioned at specific membrane domains along the myelin unit. Here we show that the precise localization of internodal proteins depends on the expression of the cytoskeletal adapter protein 4.

View Article and Find Full Text PDF

Cryo-electron tomography enables three-dimensional insights into the macromolecular architecture of cells in a close-to-life state. However, it is limited to thin specimens, <1.0 μm in thickness, typically restricted to the peripheral areas of intact eukaryotic cells.

View Article and Find Full Text PDF

In mammalian cells, the Golgi apparatus is a ribbon-like, compact structure composed of multiple membrane stacks connected by tubular bridges. Microtubules are known to be important to Golgi integrity, but the role of the actin cytoskeleton in the maintenance of Golgi architecture remains unclear. Here we show that an increase in Rho activity, either by treatment of cells with lysophosphatidic acid or by expression of constitutively active mutants, resulted in pronounced fragmentation of the Golgi complex into ministacks.

View Article and Find Full Text PDF

Lipid microdomains, also called lipid rafts, consisting of sphingolipids and cholesterol, play important roles in membrane trafficking and in signaling. Despite years of study of the composition, size, half-life and dynamic organization of these domains, many open questions remain about their precise characteristics. To address some of these issues, we have developed a new experimental approach involving the use of specific monoclonal antibodies as recognition tools.

View Article and Find Full Text PDF

During peripheral nerve myelination, Schwann cells sort larger axons, ensheath them, and eventually wrap their membrane to form the myelin sheath. These processes involve extensive changes in cell shape, but the exact mechanisms involved are still unknown. Neural Wiskott-Aldrich syndrome protein (N-WASP) integrates various extracellular signals to control actin dynamics and cytoskeletal reorganization through activation of the Arp2/3 complex.

View Article and Find Full Text PDF

The completion of cytokinesis is dominated by the midbody, a tightly-packed microtubule (MT)-based bridge that transiently connects the two daughter cells. Assembled from condensed, spindle-MTs and numerous associated proteins, the midbody gradually narrows down until daughter cell partitioning occurs at this site. Although described many years ago, detailed understanding of the abscission process remains lacking.

View Article and Find Full Text PDF

The neurexin superfamily is a group of transmembrane molecules mediating cell-cell contacts and generating specialized membranous domains in polarized epithelial and nerves cells. We describe here the domain organization and expression of the entire, core neurexin superfamily in the nematode Caenorhabditis elegans, which is composed of three family members. One of the superfamily members, nrx-1, is an ortholog of vertebrate neurexin, the other two, itx-1 and nlr-1, are orthologs of the Caspr subfamily of neurexin-like genes.

View Article and Find Full Text PDF

Saltatory conduction requires high-density accumulation of Na(+) channels at the nodes of Ranvier. Nodal Na(+) channel clustering in the peripheral nervous system is regulated by myelinating Schwann cells through unknown mechanisms. During development, Na(+) channels are first clustered at heminodes that border each myelin segment, and later in the mature nodes that are formed by the fusion of two heminodes.

View Article and Find Full Text PDF

Autophagy, an evolutionarily conserved process, has functions both in cytoprotective and programmed cell death mechanisms. Beclin 1, an essential autophagic protein, was recently identified as a BH3-domain-only protein that binds to Bcl-2 anti-apoptotic family members. The dissociation of beclin 1 from its Bcl-2 inhibitors is essential for its autophagic activity, and therefore should be tightly controlled.

View Article and Find Full Text PDF

During the evolution of epithelial cancers, cells often lose their characteristic features and acquire a mesenchymal phenotype, in a process known as epithelial-mesenchymal transition (EMT). In the present study we followed early stages of keratinocyte transformation by HPV16, and observed diverse cellular changes, associated with EMT. We compared primary keratinocytes with early and late passages of HF1 cells, a cell line of HPV16-transformed keratinocytes.

View Article and Find Full Text PDF

Myelination in the peripheral nervous system requires close contact between Schwann cells and the axon, but the underlying molecular basis remains largely unknown. Here we show that cell adhesion molecules (CAMs) of the nectin-like (Necl, also known as SynCAM or Cadm) family mediate Schwann cell-axon interaction during myelination. Necl4 is the main Necl expressed by myelinating Schwann cells and is located along the internodes in direct apposition to Necl1, which is localized on axons.

View Article and Find Full Text PDF

The tumor suppressor functions of p19(ARF) have been attributed to its ability to induce cell cycle arrest or apoptosis by activating p53 and regulating ribosome biogenesis. Here we describe another cellular function of p19(ARF), involving a short isoform (smARF, short mitochondrial ARF) that localizes to a Proteinase K-resistant compartment of the mitochondria. smARF is a product of internal initiation of translation at Met45, which lacks the nucleolar functional domains.

View Article and Find Full Text PDF

Oligodendrocytes form an insulating multilamellar structure of compact myelin around axons, thereby allowing rapid propagation of action potentials. Despite the considerable clinical importance of myelination, little is known about the molecular mechanisms that enable oligodendrocytes to generate their specialized membrane wrapping. Here, we used microarray expression profiling of oligodendrocyte-ablated mutant mice to identify new glial molecules that are involved in CNS myelination.

View Article and Find Full Text PDF

Accumulation of Na(+) channels at the nodes of Ranvier is a prerequisite for saltatory conduction. In peripheral nerves, clustering of these channels along the axolemma is regulated by myelinating Schwann cells through a yet unknown mechanism. We report the identification of gliomedin, a glial ligand for neurofascin and NrCAM, two axonal immunoglobulin cell adhesion molecules that are associated with Na+ channels at the nodes of Ranvier.

View Article and Find Full Text PDF

The level of diacylglycerol (DAG) in the Golgi apparatus is crucial for protein transport to the plasma membrane. Studies in budding yeast indicate that Sec14p, a phosphatidylinositol (PI)-transfer protein, is involved in regulating DAG homeostasis in the Golgi complex. Here, we show that Nir2, a peripheral Golgi protein containing a PI-transfer domain, is essential for maintaining the structural and functional integrity of the Golgi apparatus in mammalian cells.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) exhibits a characteristic tubular structure that is dynamically rearranged in response to specific physiological demands. However, the mechanisms by which the ER maintains its characteristic structure are largely unknown. Here we show that the integral ER-membrane protein VAP-B causes a striking rearrangement of the ER through interaction with the Nir2 and Nir3 proteins.

View Article and Find Full Text PDF