Publications by authors named "Helena Posteri"

Poly(ADP-ribose) polymerase-1 (PARP-1) is an enzyme involved in signaling and repair of DNA single strand breaks. PARP-1 employs NAD to modify substrate proteins via the attachment of poly(ADP-ribose) chains. PARP-1 is a well established target in oncology, as testified by the number of marketed drugs (e.

View Article and Find Full Text PDF

The nuclear protein poly(ADP-ribose) polymerase-1 (PARP-1) has a well-established role in the signaling and repair of DNA and is a prominent target in oncology, as testified by the number of candidates in clinical testing that unselectively target both PARP-1 and its closest isoform PARP-2. The goal of our program was to find a PARP-1 selective inhibitor that would potentially mitigate toxicities arising from cross-inhibition of PARP-2. Thus, an HTS campaign on the proprietary Nerviano Medical Sciences (NMS) chemical collection, followed by SAR optimization, allowed us to discover 2-[1-(4,4-difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1H-isoindole-4-carboxamide (NMS-P118, 20by).

View Article and Find Full Text PDF

The synthesis and SAR of a series of novel pyrazolo-quinazolines as potent and selective MPS1 inhibitors are reported. We describe the optimization of the initial hit, identified by screening the internal library collection, into an orally available, potent and selective MPS1 inhibitor.

View Article and Find Full Text PDF

As part of our drug discovery effort, we identified and developed 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as PLK1 inhibitors. We now report the optimization of this class that led to the identification of NMS-P937, a potent, selective and orally available PLK1 inhibitor. Also, in order to understand the source of PLK1 selectivity, we determined the crystal structure of PLK1 with NMS-P937.

View Article and Find Full Text PDF

A series of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives was optimized as Polo-like kinase 1 inhibitors. Extensive SAR afforded a highly potent and selective PLK1 compound. The compound showed good antiproliferative activity when tested in a panel of tumor cell lines with PLK1 related mechanism of action and with good in vivo antitumor efficacy in two xenograft models after i.

View Article and Find Full Text PDF

Polo-like kinase 1 (Plk1) is a fundamental regulator of mitotic progression whose overexpression is often associated with oncogenesis and therefore is recognized as an attractive therapeutic target in the treatment of proliferative diseases. Here we discuss the structure-activity relationship of the 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline class of compounds that emerged from a high throughput screening (HTS) campaign as potent inhibitors of Plk1 kinase. Furthermore, we describe the discovery of 49, 8-{[2-methoxy-5-(4-methylpiperazin-1-yl)phenyl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide, as a highly potent and specific ATP mimetic inhibitor of Plk1 (IC(50) = 0.

View Article and Find Full Text PDF

Background: During the last few years an increasing number of poly(ADP-ribose) polymerase (PARP) inhibitors have been appearing in the context of cancer therapy. This is mainly due to a better knowledge of the best-characterized member of the PARP family of enzymes, PARP-1, further reinforced by the recognition of the clinical benefits arising from its inhibition.

Objective/method: The aim of this review is to give the reader an update on PARP inhibition in cancer therapy, by covering both the scientific (SciFinder) search) and the patent literature (Chemical Abstract/Derwent search) published recently (2005-2008).

View Article and Find Full Text PDF

[chemical reaction: see text]. The synthesis of the C11H5 marine sponge alkaloids, (Z)-hymenialdisine and (Z)-2-debromohymenialdisine, is described. A key step was the condensation between aldisine or its monobromo derivative and a new, efficient imidazolinone-based glycociamidine precursor.

View Article and Find Full Text PDF

Two new cholera toxin (CT) ligands (4 and 5) are described. The new ligands were designed starting from the known GM1 mimics 2 and 3 by replacement of their GalNAc residue with the C4 isomer GlcNAc. As predicted by molecular modelling, the conformational properties of the equivalent pairs 2-4 and 3-5 are very similar and their affinity for CT is of the same order of magnitude.

View Article and Find Full Text PDF