Nitrogen dioxide (NO) is a pervasive gaseous air pollutant with well-documented hazardous effects on health, necessitating precise toxicological characterization. While prior research has primarily focused on lower airway structures, the upper airways, serving as the first line of defense against airborne substances, remain understudied. This study aimed to investigate the functional effects of NO exposure alone or in combination with hypoxia as a secondary stimulus on nasal epithelium and elucidate its molecular mechanisms because hypoxia is considered a pathophysiological factor in the onset and persistence of chronic rhinosinusitis, a disease of the upper airways.
View Article and Find Full Text PDFInhalation is considered to be the most relevant source of human exposure to nanoparticles (NPs); however, only a few investigations have addressed the influence of exposing the respiratory mucosal barrier to subcytotoxic doses. In the nasal respiratory epithelium, cells of the mucosa represent one of the first contact points of the human organism with airborne NPs. Disruption of the epithelial barrier by harmful materials can lead to inflammation in addition to potential intrinsic toxicity of the particles.
View Article and Find Full Text PDFCancer-associated fibroblasts (CAF) in the tumor microenvironment have a decisive influence on tumor growth and metastatic behavior. The cellular origins as well as the stimuli leading to CAF formation are heterogenous, impeding a precise characterization. Aim of this study was to analyze the influence of cytokines secreted in the process of wound healing, tumor cell-associated paracrine-secreted factors, and direct cell-cell contact on the expression of the CAF-associated markers fibroblast activation protein (FAP), α-smooth muscle actin (α-SMA), thrombospondin-1 (THBS1), and tenascin-c (TNC) by RT-PCR in mesenchymal stem cells (MSC).
View Article and Find Full Text PDFLocoregional recurrence is a major reason for therapy failure after surgical resection of head and neck squamous cell carcinoma (HNSCC). The physiological process of postoperative wound healing could potentially support the proliferation of remaining tumor cells. The aim of this study was to evaluate the influence of wound fluid (WF) on the cell cycle distribution and a potential induction of epithelial-mesenchymal transition (EMT).
View Article and Find Full Text PDFZinc oxide nanoparticles (ZnO-NP) are commonly used for a variety of applications in everyday life. In addition, due to its versatility, nanotechnology supports promising approaches in the medical sector. NP can act as drug-carriers in the context of targeted chemo- or immunotherapy, and might also exhibit autonomous immune-modulatory characteristics.
View Article and Find Full Text PDFRadioresistance is an important cause of head and neck cancer therapy failure. Zinc oxide nanoparticles (ZnO-NP) mediate tumor-selective toxic effects. The aim of this study was to evaluate the potential for radiosensitization of ZnO-NP.
View Article and Find Full Text PDFThe increasing usage of zinc oxide nanoparticles (ZnO-NPs) in industrial applications as well as in consumer products raises concern regarding their potential adverse effects to a greater extend. Numerous studies have demonstrated toxic properties of NPs, however there is still a lack of knowledge concerning the underlying mechanisms. This study was designed to systematically investigate cytotoxicity, apoptosis, cell cycle alterations, and genotoxicity induced by ZnO-NP.
View Article and Find Full Text PDF