Publications by authors named "Helena Kondow-McConaghy"

Background: Studies for developing diagnostics and treatments for infectious diseases usually require observing the onset of infection during the study period. However, when the infection base rate incidence is low, the cohort size required to measure an effect becomes large, and recruitment becomes costly and prolonged. We developed a model for reducing recruiting time and resources in a COVID-19 detection study by targeting recruitment to high-risk individuals.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) are routinely used for the delivery of macromolecules into live human cells. To enter the cytosolic space of cells, CPPs typically permeabilize the membrane of endosomes. In turn, several approaches have been developed to increase the endosomal membrane permeation activity of CPPs so as to improve delivery efficiencies.

View Article and Find Full Text PDF

Many cellular delivery reagents enter the cytosolic space of cells by escaping the lumen of endocytic organelles and, more specifically, late endosomes. The mechanisms involved in endosomal membrane permeation remain largely unresolved, which impedes the improvement of delivery agents. Here, we investigate how 3TAT, a branched analog of the cell-penetrating peptide (CPP) TAT, achieves the permeabilization of bilayers containing bis(monoacylglycero)phosphate (BMP), a lipid found in late endosomes.

View Article and Find Full Text PDF

Ineffective cellular delivery is a common problem in numerous biological applications. Developing delivery reagents that work robustly in a variety of experimental settings remains a challenge. Herein, we report how peptides derived from the prototypical cell penetrating peptide TAT can be used in combination with a small molecule, UNC7938, to deliver macromolecules into the cytosol of cells by a simple co-incubation protocol.

View Article and Find Full Text PDF

Cell delivery reagents often exploit the endocytic pathway as a route of cell entry. Once endocytosed, these reagents must overcome endosomal entrapment to ensure the release of their macromolecular cargo into the cytosol of cells. In this review, we describe several examples of prototypical synthetic reagents that are capable of endosomal escape and examine their mechanisms of action, their efficiencies, and their effects on cells.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) are typically prone to endocytic uptake into human cells. However, they are often inefficient at escaping from endosomes, which limits their ability to deliver cargos into cells. This review highlights the efforts that our laboratory has devoted toward developing CPPs that can mediate the leakage of endosomal membranes, and consequently gain better access to the intracellular milieu.

View Article and Find Full Text PDF