Background: Genomic regions repressed for DNA replication, resulting in either delayed replication in S phase or underreplication in polyploid cells, are thought to be controlled by inhibition of replication origin activation. Studies in Drosophila polytene cells, however, raised the possibility that impeding replication fork progression also plays a major role.
Results: We exploited genomic regions underreplicated (URs) with tissue specificity in Drosophila polytene cells to analyze mechanisms of replication repression.
The Drosophila Pan Gu (PNG) kinase complex regulates hundreds of maternal mRNAs that become translationally repressed or activated as the oocyte transitions to an embryo. In a previous paper (Hara et al., 2017), we demonstrated PNG activity is under tight developmental control and restricted to this transition.
View Article and Find Full Text PDFThe Shugoshin (Sgo) protein family helps to ensure proper chromosome segregation by protecting cohesion at the centromere by preventing cleavage of the cohesin complex. Some Sgo proteins also influence other aspects of kinetochore-microtubule attachments. Although many Sgo members require Aurora B kinase to localize to the centromere, factors controlling delocalization are poorly understood and diverse.
View Article and Find Full Text PDFIn metazoans, how replication origins are specified and subsequently activated is not well understood. Drosophila amplicons in follicle cells (DAFCs) are genomic regions that undergo rereplication to increase DNA copy number. We identified all DAFCs by comparative genomic hybridization, uncovering two new amplicons in addition to four known previously.
View Article and Find Full Text PDFAlthough traditional organism-based mutational analysis is powerful in identifying genes involved in specific biological processes, limitations include incomplete coverage and time required for gene identification. Biochemical screens using cell transfection or yeast two-hybrid methods are rapid, but they are limited by cDNA library quality. The recent establishment of "uni-gene sets" has made it feasible to biochemically screen an organism's entire genome.
View Article and Find Full Text PDFAnimals and plants use modified cell cycles to achieve particular developmental strategies. In one common example, most animals and plants have tissues in which the cells become polyploid or polytene by means of an S-G cycle, but the mechanism by which mitosis is inhibited in the endo cycle is not understood. The Drosophila morula (mr) gene regulates variant cell cycles, because in addition to disrupting the archetypal cycle (G1-S-G2-M), mr mutations affect the rapid embryonic (S-M) divisions as well as the endo cycle (S-G) that produces polyploid cells.
View Article and Find Full Text PDF