The use of mathematical models is a well-established procedure in the field of (waste) water engineering to "virtually" evaluate the feasibility of novel process modifications. In this way, only options with the highest chance of success are further developed to be implemented at full-scale, while less interesting proposals can be disregarded at an early stage. Nevertheless, there is still lack of studies, where different plant-wide model predictions (effluent quality, process economics, and technical aspects) are comprehensibly verified in the field with full-scale data.
View Article and Find Full Text PDFChemical conditioning prior to disposal is a common practice in biotech companies to stabilize the biological waste generated during production. Nevertheless, the state of the art models used to analyze management strategies in water treatment systems (WTS) do not include the effect of high alkaline conditions during bio-solids processing. In this paper, the prediction capabilities of a novel model-based approach describing the effect of quicklime addition (CaO) on the waste streams of an industrial WTS is assessed.
View Article and Find Full Text PDFGaining an in-depth understanding of the response of Saccharomyces cerevisiae to the different inhibitors generated during the pretreatment of lignocellulosic material is driving the development of new strains with higher inhibitor tolerances. The objective of this study is to assess, using flow cytometry, how three common inhibitors (vanillin, furfural, and acetic acid) affect the membrane potential, the membrane permeability and the concentration of reactive oxygen species (ROS) during the different fermentations. The membrane potential decreased during the detoxification phase and reflected on the different mechanisms of the toxicity of the inhibitors.
View Article and Find Full Text PDFBackground: The diauxic growth of Saccharomyces cerevisiae on glucose and xylose during cellulose-to-ethanol processes extends the duration of the fermentation and reduces productivity. Despite the remarkable advances in strain engineering, the co-consumption of glucose and xylose is still limited due to catabolite repression. This work addresses this challenge by developing a closed-loop controller that is capable of maintaining the glucose concentration at a steady set-point during fed-batch fermentation.
View Article and Find Full Text PDFA novel approach for electrochemical tuning of alcohol oxidase (AOx) and alcohol dehydrogenase (ADH) biocatalysis towards butanol-1 oxidation by incorporating enzymes in various designs of amperometric biosensors is presented. The biosensors were developed by using commercial graphene oxide-based screen-printed electrodes and varying enzyme producing strains, encapsulation approaches (layer-by-layer (LbL) or one-step electrodeposition (EcD)), layers composition and structure, operating conditions (applied potential values) and introducing mediators (Meldola Blue and Prussian Blue) or Pd-nanoparticles (Pd-NPs). Simultaneous analysis/screening of multiple crucial system parameters during the enzyme engineering process allowed to identify within a period of one month that four out of twelve proposed designs demonstrated a good signal reproducibility and linear response (up to 14.
View Article and Find Full Text PDFOperating lignocellulosic fermentation processes to produce fuels and chemicals is challenging due to the inherent complexity and variability of the fermentation media. Real-time monitoring is necessary to compensate for these challenges, but the traditional process monitoring methods fail to deliver actionable information that can be used to implement advanced control strategies. In this study, a hybrid-modeling approach is presented to monitor cellulose-to-ethanol (EtOH) fermentations in real-time.
View Article and Find Full Text PDFThe biomanufacturing industry has now the opportunity to upgrade its production processes to be in harmony with the latest industrial revolution. Technology creates capabilities that enable smart manufacturing while still complying with unfolding regulations. However, many biomanufacturing companies, especially in the biopharma sector, still have a long way to go to fully benefit from smart manufacturing as they first need to transition their current operations to an information-driven future.
View Article and Find Full Text PDFMonitoring and control of fermentation processes remain a crucial challenge for both laboratory and industrial-scale experiments. Reliable identification and quantification of the key process parameters in on-line mode allow operation of the fermentation at optimal reactor efficiency, maximizing productivity while minimizing waste. However, state-of-the-art fermentation on-line monitoring is still limited to a number of standard measurements such as pH, temperature and dissolved oxygen, as well as off-gas analysis as an advanced possibility.
View Article and Find Full Text PDFFermentation processes are still compromised by a lack of monitoring strategies providing integrated process data online, ensuring process understanding, control, and thus, optimal reactor efficiency. The crucial demand for online monitoring strategies, not only encouraged by the PAT initiative but also motivated by modern paradigms such as circular economy and sustainability, has driven research and industry to provide "next-generation process technology": in other words, technology tailored toward industrial needs. Mid-infrared (MIR) spectroscopy as such is superior to near-infrared (NIR) spectroscopy since it provides significantly enhanced selectivity.
View Article and Find Full Text PDFRecent efforts have focused on providing a systematic analysis of syntrophic microbial growth yields. These biokinetic parameters are key to developing an accurate mathematical description of the anaerobic digestion process. The agreement between experimentally determined growth yields and those obtained from bioenergetic estimations is therefore of great interest.
View Article and Find Full Text PDFThe syntrophic cooperation between hydrogen-producing acetogens and hydrogenotrophic methanogens relies on a critical balance between both partners. A recent study, provided several indications for the dependence of the biomass-specific growth rate of a methanogenic coculture on the acetogen. Nevertheless, final experimental proof was lacking since biomass-specific rates were obtained from a descriptive model, and not from direct measurement of individual biomass concentrations.
View Article and Find Full Text PDFIdentification of individual biomass concentrations is a crucial step towards an improved understanding of anaerobic digestion processes and mixed microbial conversions in general. The knowledge of individual biomass concentrations allows for the calculation of biomass specific conversion rates which form the basis of anaerobic digestion models. Only few attempts addressed the absolute quantification of individual biomass concentrations in methanogenic microbial ecosystems which has so far impaired the calculation of biomass specific conversion rates and thus model validation.
View Article and Find Full Text PDFA bacterial consortium that accumulated more than 90 % (w/w) polyhydroxybutyrate (PHB) from lactate was selected in a laboratory-scale bioreactor with a 'feast-famine' regime. Bacterial strain YD(T), representing a dominant species in this enrichment, was isolated and characterized. Analysis of the 16S rRNA gene sequence revealed that the isolate is a member of the class Gammaproteobacteria, forming an independent phylogenetic lineage.
View Article and Find Full Text PDF