Understanding the complex interactions between virus and host that drive new strain evolution is key to predicting the emergence potential of variants and informing vaccine development. Under our hypothesis, future dominant human norovirus GII.4 variants with critical antigenic properties that allow them to spread are currently circulating undetected, having diverged years earlier.
View Article and Find Full Text PDF17β-Hydroxysteroid dehydrogenase type 3 (17β-HSD3) is expressed at high levels in testes and seminal vesicles; it is also present in prostate tissue and involved in gonadal and non-gonadal testosterone biosynthesis. The enzyme is membrane-bound, and a crystal structure is not yet available. Selective aryl benzylamine-based inhibitors were designed and synthesised as potential agents for prostate cancer therapeutics through structure-based design, using a previously built homology model with docking studies.
View Article and Find Full Text PDFRNASeq analysis of PBMCs from treatment naïve TB patients and healthy controls revealed that M. tuberculosis (Mtb) infection dysregulates several metabolic pathways and upregulates BNIP3L/NIX receptor mediated mitophagy. Analysis of publicly available transcriptomic data from the NCBI-GEO database indicated that M.
View Article and Find Full Text PDFVaricella zoster virus (VZV) is a skin-tropic virus that infects epidermal keratinocytes and causes chickenpox. Although common, VZV infection can be life-threatening, particularly in the immunocompromized. Therefore, understanding VZV-keratinocyte interactions is important to find new treatments beyond vaccination and antiviral drugs.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) is a significant pathogen in immunocompromised individuals, with the potential to cause fatal pneumonitis and colitis, as well as increasing the risk of organ rejection in transplant patients. With the advent of new anti-HCMV drugs there is therefore considerable interest in using virus sequence data to monitor emerging resistance to antiviral drugs in HCMV viraemia and disease, including the identification of putative new mutations. We used target-enrichment to deep sequence HCMV DNA from 11 immunosuppressed pediatric patients receiving single or combination anti-HCMV treatment, serially sampled over 1-27 weeks.
View Article and Find Full Text PDFBackground: Trachoma is endemic in several Pacific Island states. Recent surveys across the Solomon Islands indicated that whilst trachomatous inflammation-follicular (TF) was present at levels warranting intervention, the prevalence of trachomatous trichiasis (TT) was low. We set out to determine the relationship between chlamydial infection and trachoma in this population.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) infects most of the population worldwide, persisting throughout the host's life in a latent state with periodic episodes of reactivation. While typically asymptomatic, HCMV can cause fatal disease among congenitally infected infants and immunocompromised patients. These clinical issues are compounded by the emergence of antiviral resistance and the absence of an effective vaccine, the development of which is likely complicated by the numerous immune evasins encoded by HCMV to counter the host's adaptive immune responses, a feature that facilitates frequent super-infections.
View Article and Find Full Text PDF17β-Hydroxysteroid dehydrogenases (17β-HSDs) catalyse the 17-position reduction/oxidation of steroids. 17β-HSD type 3 (17β-HSD3) catalyses the reduction of the weakly androgenic androstenedione (adione) to testosterone, suggesting that specific inhibitors of 17β-HSD3 may have a role in the treatment of hormone-dependent prostate cancer and benign prostate hyperplasia. STX2171 is a novel selective non-steroidal 17β-HSD3 inhibitor with an IC(50) of ∼200 nM in a whole-cell assay.
View Article and Find Full Text PDFSteroid sulfatase (STS) regulates the hydrolysis of steroid sulfates to their unconjugated forms. Estrone sulfate and dehydroepiandrosterone sulfate can be hydrolyzed by STS to estrone and dehydroepiandrosterone, respectively, with these steroids being the precursors for the synthesis of more biologically active estrogens or androgens. A number of potent STS inhibitors have now been developed including STX64, which entered a phase I trial for the treatment of postmenopausal women with advanced metastatic hormone-dependent breast cancer.
View Article and Find Full Text PDF17beta-Hydroxysteroid dehydrogenases (17beta-HSDs) are responsible for the pre-receptor reduction/oxidation of steroids at the 17-position into active/inactive hormones, and the 15 known enzymes vary in their substrate specificity, localisation, and directional activity. 17beta-HSD Type 3 (17beta-HSD3) has been seen to be over-expressed in prostate cancer, and catalyses the reduction of androstenedione (Adione) to testosterone (T), which stimulates prostate tumour growth. Specific inhibitors of 17beta-HSD3 may have a role in the treatment of hormone-dependent prostate cancer and benign prostate hyperplasia, and also have potential as male anti-fertility agents.
View Article and Find Full Text PDF17beta-Hydroxysteroid dehydrogenase type 3 (17beta-HSD3) is expressed at high levels in the testes and seminal vesicles but has also been shown to be present in prostate tissue, suggesting its potential involvement in both gonadal and non-gonadal testosterone biosynthesis. The role of 17beta-HSD3 in testosterone biosynthesis makes this enzyme an attractive molecular target for small molecule inhibitors for the treatment of prostate cancer. Here we report the design of selective inhibitors of 17beta-HSD3 as potential anti-cancer agents.
View Article and Find Full Text PDF17beta-Hydroxysteroid dehydrogenases (17beta-HSDs) are enzymes that are responsible for reduction or oxidation of hormones, fatty acids and bile acids in vivo, regulating the amount of the active form that is available to bind to its cognate receptor. All require NAD(P)(H) for activity. Fifteen 17beta-HSDs have been identified to date, and with one exception, 17beta-HSD type 5 (17beta-HSD5), an aldo-keto reductase, they are all short-chain dehydrogenases/reductases, although overall homology between the enzymes is low.
View Article and Find Full Text PDFThe 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyze the interconversion between the oxidized and reduced forms of androgens and estrogens at the 17 position. The 17beta-HSD type 1 enzyme (17beta-HSD1) catalyzes the reduction of estrone (E1) to estradiol and is expressed in malignant breast cells. Inhibitors of this enzyme thus have potential as treatments for hormone dependent breast cancer.
View Article and Find Full Text PDFOestradiol (E2) stimulates the growth of hormone-dependent breast cancer. 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyse the pre-receptor activation/inactivation of hormones and other substrates. 17beta-HSD1 converts oestrone (E1) to active E2, but it has recently been suggested that another 17beta-HSD, 17beta-HSD12, may be the major enzyme that catalyses this reaction in women.
View Article and Find Full Text PDFSteroid sulphatase (STS) catalyses the formation of active steroids from inactive steroid sulphates. High levels of intra-tumoural STS mRNA are associated with a poor prognosis in post-menopausal patients with oestrogen receptor positive breast cancer. In this study, analysis of the mutated STS protein showed that N- and C-terminal truncated STS constructs are inactive.
View Article and Find Full Text PDF17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), an oxidoreductase which has a preferential reductive activity using NADPH as cofactor, converts estrone to estradiol and is expressed in many steroidogenic tissues including breast and in malignant breast cells. As estradiol stimulates the growth and development of hormone-dependent breast cancer, inhibition of the final step of its synthesis is an attractive target for the treatment of this disease. The parallel synthesis of novel focused libraries of 16-substituted estrone derivatives and modified E-ring pyrazole steroids as new potent 17beta-HSD1 inhibitors is described.
View Article and Find Full Text PDF17Beta-hydroxysteroid dehydrogenases (17beta-HSDs) are a family of enzymes that regulate steroid availability within a tissue by catalysing the interconversion of active and inactive forms. Type 1 is up-regulated in many breast tumours, and is responsible for the reduction of oestrone to active oestradiol which stimulates cell proliferation within the tumour. Type 2 oxidises many active steroids to their inactive forms, including oestradiol to oestrone.
View Article and Find Full Text PDFThe 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyze the interconversion between the oxidized and reduced forms of androgens and estrogens at the 17 position. The 17beta-HSD type 1 enzyme (17beta-HSD1) catalyzes the reduction of estrone to estradiol and is expressed in malignant breast cells. Inhibitors of this enzyme thus have potential as treatments for hormone dependent breast cancer.
View Article and Find Full Text PDFThe bis-sulfamoylated derivative of 2-methoxyestradiol (2-MeOE2), 2-methoxyestradiol-3,17-O,O-bis-sulfamate (2-MeOE2bisMATE), has shown potent antiproliferative and antiangiogenic activity in vitro and inhibits tumor growth in vivo. 2-MeOE2bisMATE is bioavailable, in contrast to 2-MeOE2 that has poor bioavailability. In this study, we have examined the role of 17beta-hydroxysteroid dehydrogenase (17beta-HSD) type 2 in the metabolism of 2-MeOE2.
View Article and Find Full Text PDFMany breast tumours are hormone-responsive and rely on estrogens for their sustained growth and development. The enzyme 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) is primarily responsible for the conversion of estrone (E1) into the most potent of the human estrogens 17beta-estradiol (E2). Here we report the syntheses, inhibitory activities and docking studies for a novel series of pyrazole amides which have been discovered with the aim of probing the structure activity relationships (SAR) for such a template and of using this template to mimic the potent inhibitor 1 (Fig.
View Article and Find Full Text PDF17beta-Hydroxysteroid dehydrogenases (17beta-HSDs) are an important class of steroidogenic enzymes that regulate the bioavailability of active estrogens and androgens and are as yet a relatively unexploited therapeutic target. Based on our investigations and those of others, E-ring modified steroids were identified as a useful template for the design of inhibitors of 17beta-HSD type 1, an enzyme involved in the conversion of estrone into estradiol. The synthesis and biological evaluation of a new series of N- and C-substituted 1,3,5(10)-estratrien-[17,16-c]-pyrazoles and the corresponding SAR are discussed.
View Article and Find Full Text PDFStructure-based drug design using the crystal structure of human 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) led to the discovery of novel, selective, and the most potent inhibitors of 17beta-HSD1 reported to date. Compounds 1 and 2 contain a side chain with an m-pyridylmethyl-amide functionality extended from the 16beta position of a steroid scaffold. A mode of binding is proposed for these inhibitors, and 2 is a steroid-based 17beta-HSD1 inhibitor with the potential for further development.
View Article and Find Full Text PDF